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What is Local Type Inference?

Partially-annotated 
programs

System FLocal type inference

1. Bidirectional type checking 
2. Parameter type inference 
3. Type argument inference
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Bidirectional checking

Synthesis mode (types propagate up) Checking mode (types propagate down)

(inc 1) Int

1 Int

Γ⊢

1 IntΓ⊢

Γ⊢

Example: Checking (inc 1)

Simple for 
implementors and 

users to conceptualize
Yields predictable, 

local error messages



Infer function parameter types

(ann (fn [x] (inc x)) [Int -> Int])

(fn [x :- Int] (inc x))

Input (Clojure)

Output (System F)

Parameter type inference



(map inc [1 2 3])

(map<Int,Int> inc [1 2 3])

Infer type arguments{

Input (Clojure)

Output (System F)

Type Argument Reconstruction



(map (fn [x] (inc x)) [1 2 3])

The “Hard-to-Synthesize 
Arguments” Problem
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(map (fn [x] (inc x)) [1 2 3])

Cannot simultaneously infer 
type arguments to `map` 

and missing parameter type

To infer type arguments, 
you must first synthesize types for operands…

…but unannotated functions are hard-
to-synthesize types for!

The “Hard-to-Synthesize 
Arguments” Problem

Why?  



Existing solutions

Typed {Racket,Clojure}

TypeScript Note: any ≈ (void*)

(map (fn [x :- Any] (inc x)) 
     [1 2 3])

[1,2,3].map((x:any)=>x+1)

Still doesn’t check!

Function body is trusted!

Reticulated Python

map(lambda (x:Dyn): x+1, 
    [1,2,3]) 

Runtime overhead

Note: Any = ⊤



Java Lambdas

Type args

Param type (inferred as Int)

List.of(1,2,3) 
 .map(x->x+1)

Existing solutions



Gold standard

roster
    .stream()
    .filter(
        p -> p.getGender() == Person.Sex.MALE
            && p.getAge() >= 18
            && p.getAge() <= 25)
    .map(p -> p.getEmailAddress())
    .forEach(email -> System.out.println(email));

Type args

Param type

Type args

Param type

Type args

Param type
…is this achievable 

with non-OO idioms?

Java Lambdas



Solving the 
“Hard-to-synthesize arguments” 
problem with Symbolic Analysis



Another hard-to-synthesize term

(let [f (fn [x] x)] 
  (f 1) 
  (f “a”))

How to check?
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1. Infer polymorphic principal(-like) type for f
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Wishful thinking

(let [f (fn [x] x)] 
  (f 1) 
  (f “a”))

(let [f (ann (fn [x] x) 
             (IFn [Int -> Int] 
                  [Str -> Str]))] 
  (f 1)  
  (f “a”))  

1. Infer polymorphic principal(-like) type for f

(let [f (ann (fn [x] x) 
             (All [a] [a -> a]))] 
  (f 1)      
  (f “a”))  

2. Infer sufficiently capable intersection type for f

This talk: 
Achieving this transformation 

within the framework of 
Local Type Inference



Challenges

(let [f (fn [x] x)] 
  (f 1) 
  (f “a”))

Posed by Hosoya & Pierce, 
“How Good is Local Type Inference?” (1999)



Challenges

(let [f (fn [x] x)] 
  (f 1) 
  (f “a”))

1. How to delay the checking of hard-to-
synthesize terms?

Posed by Hosoya & Pierce, 
“How Good is Local Type Inference?” (1999)



Challenges

(let [f (fn [x] x)] 
  (f 1) 
  (f “a”))

1. How to delay the checking of hard-to-
synthesize terms?

2. How to force checking of hard-to-
synthesize terms to preserve soundness?

Posed by Hosoya & Pierce, 
“How Good is Local Type Inference?” (1999)



(let [f (fn [x] x)] 
  (f 1) 
  (f “a”))

Idea 1: Inline let-bound functions
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Idea 1: Inline let-bound functions



(let [f (fn [x] x)] 
  (f 1) 
  (f “a”))

1. How to delay the checking of 
hard-to-synthesize terms?

A: Inline let-bound unannotated functions

(let [] 
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(let [f (fn [x] x)] 
  (f 1) 
  (f “a”))

1. How to delay the checking of 
hard-to-synthesize terms?

2. How to force checking of hard-to-
synthesize terms to preserve soundness?

A: Inline let-bound unannotated functions

A: Automatic

(let [] 
  ((fn [x] x) 1) 
  ((fn [x] x) “a”)) Problem: Variable-capture

Idea 1: Inline let-bound functions

does not terminate if f is 
recursive

how to determine if a 
variable binds an 
(unannotated) function?



(let [f (let [y <DB-write>] 
          (fn [x] y y))] 
  (f 1) 
  (f “a”))

Idea 1: Inline let-bound functions



(let [f (let [y <DB-write>] 
          (fn [x] y y))] 
  (f 1) 
  (f “a”))

(let [] 
  ((let [y <DB-write>] 
     (fn [x] y y)) 
   1) 
  ((let [y <DB-write>] 
     (fn [x] y y)) 
   “a”))

Idea 1: Inline let-bound functions

?



(let [f (let [y <DB-write>] 
          (fn [x] y y))] 
  (f 1) 
  (f “a”))

(let [] 
  ((let [y <DB-write>] 
     (fn [x] y y)) 
   1) 
  ((let [y <DB-write>] 
     (fn [x] y y)) 
   “a”))

Idea 1: Inline let-bound functions

(let [] 
  ((fn [x] <DB-write> <DB-write>) 
   1) 
  ((fn [x] <DB-write> <DB-write>) 
   “a”))

?
?



Idea 2: Let-polymorphism

(let [f (fn [x] x)] 
  (f 1) 
  (f “a”))

…immediately doesn’t work because f ’s type is hard-to-synthesize! 
(no unification variables in Local Type Inference)

Let-polymorphism infers a principal type 
scheme for `f` and copies the type (with 
renamed unification variables) in each 
occurrence of `f` for separate instantiation.



Idea 3: “Delayed function type”
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Idea 3: “Delayed function type”

(let [f (fn [x] x)] 
  (f 1) 
  (f “a”))

f : @(fn [x] x)
1. How to delay the checking of 

hard-to-synthesize terms?
A: Introduction rule for unannotated 
functions makes a “delayed function type”
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Idea 3: “Delayed function type”

(let [f (fn [x] x)] 
  (f 1) 
  (f “a”))

A: Applications of delayed function 
types rechecks the function’s source 
code with given argument types

f : @(fn [x] x)

Problem: Undecidable!

@(fn [x] x) <: Int -> ?
@(fn [x] x) <: Str -> ?

1. How to delay the checking of 
hard-to-synthesize terms?

2. How to force checking of hard-to-
synthesize terms to preserve soundness?

A: Introduction rule for unannotated 
functions makes a “delayed function type”



Idea 3: “Delayed function type”

(let [f (fn [f] (f f))] 
  (f f))

Problem: Undecidable!

1. Delay (fn [f] (f f))

2. Check (f f)

3. Check (f f)

4. Check (f f)

…



Restrictions
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Many local functions are not recursive 

(implicitly or explicitly)
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Restrictions

Insight: 
Many local functions are not recursive 

(implicitly or explicitly)

Insight: 
Most top-level functions have annotations 

anyway, and 
are otherwise valuable to add

New Restrictions: 
1. Only delay local functions 
2. Do not allow delayed functions to escape its top-level form 
3. Use fuel to make uncommon cases (recursive locals) 

conservatively decidable



Idea 3: “Delayed function type”

(let [f (fn [f] (f f))] 
  (f f))

1. Delay (fn [f] (f f))

2. Check (f f) Fuel = 2

3. Check (f f) Fuel = 1

4. Check (f f) Fuel = 0
5. Type error: Reduction limit

Tradeoff: Platform dependency



Idea 3: “Delayed function type”

Problem: Variable Capture!

(let [f (let [y 1] 
          (fn [x] y))] 
  (f 1) 
  (f “a”))
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Idea 3: “Delayed function type”

Problem: Variable Capture!

(let [f (let [y 1] 
          (fn [x] y))] 
  (f 1) 
  (f “a”)) f : @(fn [x] y)

Lost the type of y!



Solution: Symbolic Closures

(let [f (let [y 1] 
          (fn [x] y))] 
  (f 1) 
  (f “a”)) f : y:Int@(fn [x] y){

Keep type environment for when 
we need it (“type-level” closure)



Solution: Symbolic Closures

(let [f (let [y 1] 
          (fn [x] y))] 
  (f 1) 
  (f “a”)) f : y:Int@(fn [x] y){

Keep type environment for when 
we need it (“type-level” closure)

Can check y!
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  (f 1) 
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  (f “a”))

Input

Output
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(let [f (fn [x] x)] 
  (f 1) 
  (f “a”))

(let [f (ann (fn [x] x) 
             (IFn [Int -> Int] 
                  [Str -> Str]))] 
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Input
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3. Check `f` with Str (returns Str)
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Elaboration with Symbolic Closures

(let [f (fn [x] x)] 
  (f 1) 
  (f “a”))

(let [f (ann (fn [x] x) 
             (IFn [Int -> Int] 
                  [Str -> Str]))] 
  (f 1) 
  (f “a”))

Input

Output

f : {}@(fn [x] x)1. Assign f a symbolic closure:

2. Check `f` with Int (returns Int) 

3. Check `f` with Str (returns Str)

4. Replace f ’s type with its capabilities

f <: Int -> ?
f <: Str -> ?



End example, 
break for questions?



More about Symbolic Closures







Subtyping relation calls 
type checker



Via subsumption rule

Subtyping relation calls 
type checker
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How to check?
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(map (fn [x] (inc x)) 
     [1 2 3])
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Derive data-flow  
graph from operator

Solve constraints  
to a fixed point

{}@(fn [x] (inc x)) <: [a -> b]    => C1

(Vec Number)        <: (Seqable a) => C2



(map (fn [x] (inc x)) 
     [1 2 3])

How to check?

Derive data-flow  
graph from operator

Solve constraints  
to a fixed point

{}@(fn [x] (inc x)) <: [a -> b]    => C1

(Vec Number)        <: (Seqable a) => C2

Future work: What if data-flow is recursive?



Related work



Related work

Similar goal as 
“Expansion variables” in 

Intersection Type Inference

Carlier & Wells’ System E (2004)

Similar cost: 
Inference cost = Beta-reduction cost

Expansion variables



Related work

Allows partial type information to propagate down 
term

Odersky et al. Colored Local Type 
Inference (POPL 2001)

{

Colored Local Type Inference

Conservative extension of Local Type Inference
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Background: 
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Review

Problem: 
Local annotations are annoying

Background: 
Local type inference requires 

annotations

Insight: 
Top-level annotations are provided

Solution: 
Use symbolic analysis  

to infer simple local functions

Insight: 
Local functions are usually trivial



Thanks!


