
Typed Clojure: Wishful Thinking
Ambrose Bonnaire-Sergeant

This talk
• Quick intro to Typed Clojure

• List of challenges/solutions to improve Typed Clojure

• Barriers to Entry

• Annotation Burden

• Strictness

• ClojureScript

• Hopefully some discussion

What is Typed Clojure?

• Optional type system for Clojure

• Write expected types for your program, checker will validate

• Static analysis

• Checks your program without running it

Example
(defalias Point
 “A point with x-y coordinates”
 ‘{:x Int :y Int})

(ann point [Int Int -> Point])
(defn point [x y]
 ‘{:x x :y y})

(ann add-xy [Point -> Int])
(defn add-xy [{:keys [x y] :as p}]
 (+ x y))

True unions + Flow typing

(ann maybe-add-xy [(U nil Point) -> (U nil Int)])
(defn maybe-add-xy [{:keys [x y] :as p}]
 (when p
 (+ x y))) ; x : Int, y : Int

Expands before checking

(defmacro my-when [& body] `(when ~@body))

(ann maybe-add-xy [(U nil Point) -> (U nil Int)])
(defn maybe-add-xy [{:keys [x y] :as p}]
 (my-when p
 (+ x y)))

Challenges

Part 1: Barriers to entry
- initialization time in production

- bad error messages

- lack of library annotations

Challenge
Don’t want to increase initialization time for type checked libraries

- collecting annotations

- expanding/defining wrapper macros

Solution
Delay loading annotations

(ns foo …)
; lazily load ann
(t/register-ns!
 ‘foo.annotations)

(def f 1)

(ns foo.annotations
 (:require […]))

(t/ann f Int)
(t/ann g Int)
…

Challenge
No source of type annotations for libraries

- libraries don’t provide their own types

- no central place for annotations like DefinitelyTyped for TypeScript

Solutions

- Start a suite of annotations under typedclojure GitHub org

- reuse specs as a type annotations

- unfortunately, specs don’t often make good types

- no polymorphism

- how to translate semantics to types? (eg. fspec, every)

- s/keys’s implicit optional entries

- can we retrofit these specs to be more useful as types?

- Guidelines for how to add type annotations to your own libraries

Challenge
Error messages from macro expansions point to code the user didn’t write

(inc (when foo 1))

Type error: Expected Number, found nil
in: nil
in: (if foo 1 nil)

Solution
Custom typing rules

(when foo 1)

(if foo
 1
 (with-blame {:form ‘(when foo 1)
 :msg “Else branch of `when` expected nil”}
 nil))

Type error: Expected Number, found nil
Message: Else branch of `when` expected nil
in: (when foo 1)

The custom rule:

Part 2: Annotation burden
- too many `fn` annotations

- brittle polymorphic inference

- need “wrapper” macros to help check complex expansions

- these macros need their own annotations

Challenge

(let [f (fn [x :- Int] (inc x))]
 (f 1))

Need to annotate “obvious” function arguments

Solution

(let [f #(inc %)]
 ; f : (Lambda #(inc %))
 (f 1)) ; checking happens here

Delay type checking `fn` body until called

Caveats:

- Need to handle infinite recursion (eg. checking y-combinator)

- Can we avoid redundantly re-checking body of `fn`?

Challenge

(map (fn [a :- Int] …) [1 2 3])

Need to annotate polymorphic higher-order function arguments

Solution: Smarter inference
Deduce an optimal “ordering” for checking arguments

(All [a b]
 [[a -> b] (Seqable a) -> (Seqable b)])

12 3 4

1. Check collection first

2. Use collection type to seed function argument

3. Now we have the return argument type

4. Which travels to the return of the entire function

Type checking comp
(ann f [Number -> Number])
(def f (comp #(inc %) #(dec %)))

Type checking comp
(ann f [Number -> Number])
(def f (comp #(inc %) #(dec %)))

4 12 3
5 6

1

2345

6

Type checking map transducer
(ann f (Transducer [Num -> Num]))
(def f (map #(inc %)))

12 3
4

1

23

4

Scale to comp+transducers

Challenge
Need to write typed wrappers for macros with complex expansions

(require ‘[clojure.core.typed.async :as ta])
(ta/go
 (when foo
 1))

Solution
Support custom rules for macros that don’t require expansion,

then expand them after type checking

(go
 (when foo
 1))

(go
 (if foo
 1
 nil))

(when foo
 1)

(if foo
 1
 nil)

Expand

& check

Extract

Reinsert

Challenge
Need to write local annotations for wrapper macros

(t/doseq [a :- Int, [1 2 3]] :- Int
 …)

Solution
Write custom typing rules to direct inference.

(t/doseq [a :- Int, [1 2 3]] :- Int
 …)

Part 3: Strictness

- stricter map operations

- opt-in unsoundness

Challenge
Map ops don’t catch enough type errors

(ann m1 (HMap :optional {:foo Int}))

(def m1 (assoc {} :foob 1))

Assoc wrong key

Get wrong key
(ann v (U nil Int)

(def v (get {:exists 1} :non-existent-key))

Solutions(?)
More restrictive subtyping for HMap’s

(ann m1 (HMap :optional {:foo Int}))

(def m1 (assoc {} :foob 1))

Assoc wrong key

Get wrong key
(ann v (U nil Int)

(def v (get {:exists 1} :non-existent-key))

Error: unknown key :foob

Challenge

(defn my-fn […]
 (let [a (lib1 …)
 b (lib2 …)
 c (lib3 …)]
 (lib4 …)))

Typed Clojure is too strict with unannotated code

Solution
Opt-out of soundness—closer to TypeScript when needed

(check-ns ‘my-ns
 :check-config {:check-ns-dep :never
 :unannotated-def :unchecked
 :unannotated-var :unchecked
 :unannotated-arg :unchecked})

Part 4: ClojureScript
- analyzer that supports partial analysis

- undefined/nil

- Closure/TypeScript annotations

Challenge
Analyzer that can partially expand code (does not exist yet)

(go (when foo 1))

(go (if foo 1 nil))

Challenge
ClojureScript mostly treats nil/undefined as equivalent

(defalias Nilable
 (TFn [x] (U nil x)))

(defalias Nilable
 (TFn [x] (U undefined nil x)))

More problems…
Solution: Introduce new base types js/Null and js/Undefined

But now…:

- Is nil == js/Null?

- Is js/Undefined <: nil? since (nil? js/undefined) => true

- Either choice has interesting consequences

Challenge
How to use Closure/TypeScript annotations to our advantage?

What is Typed Clojure good at?

• Flow typing

• Checking higher-order idioms (channels, functions, atoms)

• Specifying polymorphic functions

Problems with Typed Clojure

• Insufficient local type inference

• Large annotation burden

• Slow (checking speed & dev iterations)

• Macro usages hard to check

• Sometimes too strict, sometimes too loose

Possible Solutions

• custom typing rules

• better inference, error messages

• “directed” local type inference

• more flexible checking

Thanks

