
Automatic Type
Annotations

Ambrose Bonnaire-Sergeant
Ph.D. Qualifying exam

A Story about
Annotating…

JavaScript
(Google Closure

annotated)
TypeScript

“How do we convert 600k lines of JavaScript
to TypeScript, in an actively developed app?”

?

Option 1
- “Gradual” typing

Option 2
- Stop and sprint!

Chose: Option 2
- Annual 48 hour hackathon
- No devs working on core product

for 48 hours!

CTO’s thoughts:

Tools for the job

Companies will heavily invest in
transitioning to typed languages

Translation to typed languages
can be partially automated

Takeaways

Background for My Research

Clojure

Typed Clojure

clojure.spec

(untyped)

(typed sister-language)

(contract system)

Manually
annotate

My research objective

Create effective tools to ease the transition
to annotated target languages.

Clojure
clojure.spec

Typed Clojure
Tool-assisted

Approach

1. Understand target language theory
2. Understand target language practice
3. Compare our tool with similar tools

This Talk

1. Understand target language theory
• Quals question: spec theory
• Audience questions 

2. Understand target language practice
• Quals question: spec practice
• Audience questions 

3. Compare with similar tools
• Quals question: perf analysis
• Audience questions

1. Understand target language theory

1. Understand target language theory

Clojure clojure.spec
Tool-assisted

Clojure clojure.spec
Tool-assisted

1. Understand target language theory

Quals
Question

(spec theory)

1. Formulate a formal model for clojure.spec
2. Implement model in PLT Redex
3. Formulate consistency property between

contracted and uncontracted execution
(a) Test property in Redex

Proxy-based

Generative-testing based

f

Tag-testf(ifn?)

f

Gen arg

f

Gen arg

f

Gen arg

1. Understand target language theory1. Formulate a formal model for clojure.spec

Model Features

f

f

Gen arg

f

Gen arg

f

Gen arg

f

f

f

Gen arg

f

Gen arg

f

Gen arg

f

f

Gen arg

f

Gen arg

f

Gen arg

f

f

Gen arg

f

Gen arg

f

Gen arg

f

Consistent?

Consistent?

f

1 (assert-spec 1 int?) (assert-spec 1 nil?)

1 1

Spec ERROR:
expected nil, found 1

Consistent? Consistent?

Uncontracted Contracted

(fn a [] (a))
(assert-spec (fn a [] (a))
 (fspec :args (cat)))

(fn a [] (a))

Consistent?

f

Gen arg

f

Gen arg

f

Gen arg

f

⊥

Uncontracted Contracted

f

f

Gen arg

f

Gen arg

f

Gen arg

f

Consistent?

Consistent?

Break for
Questions

1. Understand target language theory
2. Understand target language practice
3. Build useful and performant tools based on this

knowledge

Our tool’s
 output

Updated
code

Quals
Question

(spec practice)

1. Examine clojure.spec usage in real-world
code bases

2. Analyze frequency and precision of higher-
order function annotations

s/fspec = Gen testing-based function contract

Searches say generative testing
is not that popular

Search 1

Search terms

Search 2

clojure.spec
&& fspec

clojure.spec
&& ifn?

Projects

18

17

Ratio of
<Tag-test>:<Gen-testing>

function specs

3:79

188:0

Different function contracts rarely
occur in the same project

Our tool’s
 output

f(ifn?)

f

Gen arg

f

Gen arg

f

Gen arg

Break for
Questions

1. Understand target language theory
2. Understand target language practice
3. Compare with similar tools

3. Compare with similar tools

Why is this
useful?

• Ensure performance of our tool is
reasonable compared to existing tooling

• Better understand tradeoffs we made by
comparing with other approaches

Quals
Question

(perf analysis)

1. Compare time+space complexity vs. Daikon
2. Can we reuse Daikon’s optimizations?
3. How expressive are Daikon annotations?

Dynamic
Instrumentation

Type
Reconstruction

Program Annotations

Our Tool’s Type Reconstruction

t=0

t=3

x : Intt=1 Observed
x is an int

Initial

Observed
y is a bool

t=2
x : Int y : Bool

Observed
x is a bool

x : Int U Bool y : Bool

Observed x
is a symbolt=4 x : Any y : Bool

even(x) even(y) even(z)

odd(x) odd(y) odd(z)

even(x) even(y) even(z)

odd(x) odd(y) odd(z)

Daikon’s Type Reconstruction

t=0

t=2

even(x) even(y) even(z)

odd(x) odd(y) odd(z)
t=1 Observed

x = 3

Observed
y = 4

Initial

Dynamic
Instrumentation

Type
Reconstruction

Processing traces on-line

Break for
Questions

Recap

I want to create effective tools to ease the transition
to annotated target languages.

1. Understand target language theory
2. Understand target language practice
3. Compare our tool with similar tools

Approach:

Thanks

“Intertwined arrows” designed by Freepik

