Automatic Type
Annotations

Ambrose Bonnaire-Sergeant

Ph.D. Qualifying exam

A Story about
Annotating...

<. Lucidchart

JavaScript ?

(Google Closure =———————————ly TYPESCI'IPt

annotated)

“How do we convert 600k lines of JavaScript
to TypeScript, in an actively developed app?”

Option 1 Option 2
- “Gradual” typing - Stop and sprint!

Active

Chose: Option 2
- Annual 48 hour hackathon

- No devs working on core product
for 48 hours!

CTO’s thoughts:

June 9th

| think there's a zero percent chance you
can get all our Closure code successfully
building as Typescript in a matter of three

days.

Six of us engineers decided to try anyway.

guli.Js

\ 0/16 Assi

document.js

BN
s comment.js

/block.js/ S \ \

text.js \ / b userjs net.js
T item.js 1 T
/ \ bezier.js

point.js Legend
"
ia.i Read
config.js object.js y
/ In Progress I
array.|s
Done
util.js

Clutz - Closure to TypeScript Declarations (.d.ts)
generator.

build passing

This project uses the Closure Compiler to parse Closure-style JSDoc type annotations from ES5/ES2015 code, and
generates a suitable TypeScript type definition file (.d.ts) for the exported API.

Gents - Closure to TypeScript converter

This repository also hosts gents - tool that generates TypeScript code out of Closure annotated .js . We host it in this
repo together with clutz because they both wrap Closure Compiler to get the type information. As such gents shares
clutz restriction that it only accepts code that is valid well-typed Closure JavaScript.

. = CONVERTING 600K LINES TO
TYPESCRIPT IN 72 HOURS

® November 16, 2017 & Paul Draper & Ryan Stringham ¢ 15 Comments

<. Lucidchart

Takeaways
Companies will heavily invest in
transitioning to typed languages

Translation to typed languages
can be partially automated

Background for My Research

Typed Clojure
m (typed sister-language)

annotate

o Clojure

(untyped)

clojure.spec

(contract system)

My research objective

Create effective tools to ease the transition
to annotated target languages.

/y Typed Clojure
) Clojure <_[oofassisted
| ——] \ Cloj ure. SP ec

Approach

1. Understand target language theory
2. Understand target language practice
3. Compare our tool with similar tools

This Talk

1. Understand target language theory
» Quals question: spec theory
» Audience questions

2. Understand target language practice
» Quals question: spec practice
» Audience questions

3. Compare with similar tools
- Quals question: perf analysis
» Audience questions

1. Understand target language theory

~
'!

ﬂ . Tool-assisted .

) o

AR

4
Tool-assisted

OClojure — ClOjure.spec

118_18 1. Formulate a formal model for clojure.spec

Question 2. Implement model in PLT Redex
3. Formulate consistency property between
(spec theory) N yPropTy e

contracted and uncontracted execution
(a) Test property in Redex

(ifn? £ 1) Tag-test
_
Proxy-based
(G(en_am)
Gf/b Gen arg
s T Generative-testing based
Ty
i f(w% .
- f

Model Features

A\C

AC.

el

O,

E:x=C|L|X
if EE E)
C:=N|O|B|nil| H| ERR
X ::= variable-not-otherwise-mentioned
ERR ::= (error any any ...)
L:=(n[X..]E)|(ln X [X..] E)
NONFNV :=B |H | nil | N
V=0 |L | NONFNV
Ve .=V | ERR
H ::= (HashMap (V V) ...)
B ::= true | false
N ::= number
7 ::= natural
O:=P
inc | dec
+ | * | dissoc
assoc | get
P ::= zero? | number? | boolean? | nil?
Cu=][]|GMCEE)|(V..CE..)

P

::= | (assert-spec C 5)
::= | (gen-spec 5)
o= | (assert-spec E S)

| (FSpec (S ...) 5) | (FSpec (S ...) S Z)

(

Genaro w
r

(T

Gen arg
= 1
- m
r _
r

i (X L) E V.| »Csudst'E (X1 V] ..l
where unique[(X ...)], (zame length? X ..) (V.0
Clifm Xeee |X o E'V ...'] » Csudst'|E, (%‘l:c« 11 (fn Xox | X .. E))
T

Land)

where u'l'q.l::[(X»-. X], (sare=leaglh? (X) (V..

C[(.f VE EJ:] — C:EII
whare (Lzulhy? VI
CIVE E!] —CE]
whare (0. (Lrull.y? V)
ClCV.]—CWV]
whae S[(OV 0, V4]

CIERR| » ERR
whare (0. (Lop=level=hole?)

K] — (e

wonrknoa nevar zhike X
{(NONFNV V ...) — (error bad-application)
Cl{(fx X . EV..)] — (erow arguraent-uisnetel.
{grg-niematct-meg (X ..) (V.. im[X..]=))
where unique[(X ..)). (not (eame-length? (X ..) (V .)})
ClI:V .| ¥ (crror argument-micmatcek
(arg-mismatchk-mag (X ..) (V.) (fu[X_.]=))
whewe (a0l (same=lengll? (X) (V.)], f=(MmX:[X .]F)

(k]

[roc-E]

(itt]
(it-f]
(3]
[crror]

[x=ar-nr]
[B-ron-functicn]

[B-mismaich]

(A

I

Cl(gen-spec S)] — C/gen-spec*[S]|] [gen-spec]
Cl(assert-spec (fn [X ...] E) —>» C[(fn X ...] [assert-deffspec]
(DefFSpec (S, ...) S:))] (assert-spec
(Efn X ...] E)
assert-spec X S,) ...)
S0)]
Cl(assert-spec (fn X. X ...] E) — Cl(fn X, X ...] [assert-rec-deffspec]
(DefFSpec (S, ...) 1)) (assert-spec
(sfn X ..] E)
assert-spec X 5,) ...)
S:))]
Cl(assert-spec V P)] — C/(if (P V) [assert-spec-P?]
V
(error spec-error
(spec-violation-msg P V)))] f
Cl(gen-spec S)] — Clgen-spec*-hof[5]] [gen-spec]

Cl(assert-spec V (FSpec (S, ...) 8.))] — Cl(assert-spec V (FSpec (5, ...) S, ngenerations))] [assert-fspec-init]

Cl(assert-spec f (FSpec (5. ...) S, 0))] — Clf] [assert-fspec-stop]
where f = (fn [X ...] E)
Cl(assert-spec f (FSpec (S, ...) 8- Z))] —> C[{do (assert-spec (f (gen-spec S.) ...) 5.) [assert-fspec-gen)]

(assert-spec f (FSpec (S. ...) S (subl Z))))]
where (€ 0 Z),f= (fn X ..] E)

Cl(assert-spec f (FSpec (S, ...) S: Z))] —> C[{do (assert-spec (f (gen-spec S.) ...) 5:) [assert-re Genaro) N
(assert-spec f (FSpec (S, ...) S: (subl Z))))] Gen arg)
where (€ 0 Z), f = (fn nme X ...] E) - -

—> (error spec-error
(nonf-spec-error-msg NONFNV))

Cl(assert-spec NONFNV
(FSpec (S. ...) S: Z))]

Uncontracted Contracted

® en

1 (assert-spec 1 int?) (assert-spec 1 nil?)

l

Spec ERROR:
expected nil, found 1
1 1

v v

Consistent? Consistent?

Uncontracted

Q

Contracted

@] BRG

(fn a [] (a))

(fn a [] (a))

(assert-spec (fn a [] (a))
(fspec :args (cat)))

1

X

Consistent?

Break for
Questions

2. Understand target language practice

uals 1. Examine clojure.spec usage in real-world

S ZUEStiOIl code bases

2. Analyze frequency and precision of higher-

(S pec prac tic 6) order function annotations

Searches say generative testing

is not that popular
4,000

= £ 100

7 2

ez a

5 2,000 L.

: :

7p. I R
0 - 0 -
s/def s/keys s/fdef s/fspec s/def s/keys s/fdef s/fspec

GitHub CrossCl]

s/fspec = Gen testing-based function contract

Different function contracts rarely

occur in the same project

Ratio of
Search terms 4 Projects <Tag-test>:<Gen-testing>
function specs
Search 1 | clojure.spec 18 3.79
&& fspec
Search 2 | clojure.spec 17 1880

& 1fn?

(ifn? f)
_ W,
Our tool’s
output
\ [G/en_a_tcr)
fnggn arg]
v
g
. f

Break for
Questions

3. Compare with similar tools

3. Compare with similar tools

Why is this

useful?

o Ensure performance of our tool is
reasonable compared to existing tooling

e Better understand tradeoffs we made by
comparing with other approaches

uals 1. Compare time+space complexity vs. Daikon
g 2uesti()]_’1 2. Can we reuse Daikon’s optimizations?

: 3. How expressive are Daikon annotations?
(perf analysis)

Dynamic T'ype
Instrumentation Reconstruction

Pro gram ﬁ ﬁ Annotations

Our Tool’s Type Reconstruction

I t=0 Initial
I Observed
t=1 x is an int
' =2 Observed
y 1s a bool
=3 | Observed —— -
Observed
Observed x
t=4

is a symbol

Daikon’s Type Reconstruction

t=0 | Initial

Observed
t=1

x=3
t=2 | Observed

y=4 = K=

Processing traces on-line

Dynamic

Instrumentation ‘

T'ype
Reconstruction

=

e 4

Break for
Questions

Recap

[want to create effective tools to ease the transition
to annotated target languages.

Approach:

1. Understand target language theory
2. Understand target language practice
3. Compare our tool with similar tools

“Intertwined arrows” designed by Freepik

