
Stream starting
soon…

Leveling Up
 Clojure Runtime Specs

Ambrose Bonnaire-Sergeant

Madison Clojure

Leveling Up
 Clojure Runtime

Specs
Ambrose Bonnaire-Sergeant

Programming
before Specs

1. Write the program

1. Write the program
2. Try to break it

1. Write the program
2. Try to break it
3. Fix the program

f(x)=1
“Takes an argument x and returns x.”

f(x)=1
“Takes an argument x and returns x.”

f(1)=>1

f(x)=1
“Takes an argument x and returns x.”

f(1)=>1

f(x)=1
“Takes an argument x and returns x.”

f(1)=>1
f(“hello”)=>“hello”

f(x)=1
“Takes an argument x and returns x.”

f(1)=>1
f(“hello”)=>“hello”

f(x)=1
“Takes an argument x and returns x.”

f(1)=>1
f(“hello”)=>“hello”

f(1)=>1
f(“hello”)=>“hello”

f(x)=x

f(1)=>1
f(“hello”)=>“hello”

“Takes an argument x and returns x.”

f(1)=>1
f(“hello”)=>“hello”

f(x)=x

f(1)=>1
f(“hello”)=>“hello”

“Takes an argument x and returns x.”

f(1)=>1
f(“hello”)=>“hello”

f(x)=x

f(1)=>1
f(“hello”)=>“hello”

“Takes an argument x and returns x.”

f(1)=>1
f(“hello”)=>“hello”

f(x)=x

f(1)=>1
f(“hello”)=>“hello”

“Takes an argument x and returns x.”

Programming
after Specs

1. Write the program

1. Write the program
2. Write a "spec"

1. Write the program
2. Write a "spec"
3. ?????????????

1. Write the program
2. Write a "spec"
3. ?????????????
4. Fix the program

I just wrote a
program!

I just wrote a
program!

f(x)=1

I just wrote a
program!

anks!!

f(x)=1

I just wrote a
program!

anks!!

f(x)=1
I can check your

program for mistakes if you
give me a spec!

f(x)=1

f(x)=1

Here's a Spec
explaining how it

should work!

Spec
f(x)=1

Here's a Spec
explaining how it

should work!

Spec
f(x)=1

Here's a Spec
explaining how it

should work!

anks!
Checking your

program against
the spec...

f(x)=1

f(x)=1

Oh, your
program has a

mistake! Here's
where it went

wrong...

f(x)=1

Oh, your
program has a

mistake! Here's
where it went

wrong...
Whoops! Let me

fix that...

f(x)=1

f(x)=x

f(x)=x

ere! Try again
please?

f(x)=x

ere! Try again
please?

f(x)=x

ere! Try again
please?

Looks good
to me!

f(x)=x

ere! Try again
please?

Looks good
to me!

f(x)=x

ere! Try again
please?

Looks good
to me!

clojure.spec

f(x)=x

ere! Try again
please?

Looks good
to me!

clojure.spec
Malli

Intro to specs
(via Malli)

Intro to specs
(via Malli)

{:street "Washington Ave",
 :city "Madison"
 :zip 53701
 :lonlat [43.0812792448301, -89.37430643983365]}

{:street "Washington Ave",
 :city "Madison"
 :zip 53701
 :lonlat [43.0812792448301, -89.37430643983365]}

Address

{:street "Washington Ave",
 :city "Madison"
 :zip 53701
 :lonlat [43.0812792448301, -89.37430643983365]}

(def Address
 [:map
 [:street string?]
 [:city string?]
 [:zip int?]
 [:lonlat [:tuple double? double?]]])

Address

{:street "Washington Ave",
 :city "Madison"
 :zip 53701
 :lonlat [43.0812792448301, -89.37430643983365]}

(def Address
 [:map
 [:street string?]
 [:city string?]
 [:zip int?]
 [:lonlat [:tuple double? double?]]])

Spec for Addresses
Address

{:street "Washington Ave",
 :city "Madison"
 :zip 53701
 :lonlat [43.0812792448301, -89.37430643983365]}

(def Address
 [:map
 [:street string?]
 [:city string?]
 [:zip int?]
 [:lonlat [:tuple double? double?]]])

{:street "Washington Ave",
 :city "Madison"
 :zip 53701
 :lonlat [43.0812792448301, -89.37430643983365]}

(def Address
 [:map
 [:street string?]
 [:city string?]
 [:zip int?]
 [:lonlat [:tuple double? double?]]])

{:street "Washington Ave",
 :city "Madison"
 :zip 53701
 :lonlat [43.0812792448301, -89.37430643983365]}

(def Address
 [:map
 [:street string?]
 [:city string?]
 [:zip int?]
 [:lonlat [:tuple double? double?]]])

{:street "Washington Ave",
 :city "Madison"
 :zip 53701
 :lonlat [43.0812792448301, -89.37430643983365]}

(def Address
 [:map
 [:street string?]
 [:city string?]
 [:zip int?]
 [:lonlat [:tuple double? double?]]])

(def Address
 [:map
 [:street string?]
 [:city string?]
 [:zip int?]
 [:lonlat [:tuple double? double?]]])

(def Address
 [:map
 [:street string?]
 [:city string?]
 [:zip int?]
 [:lonlat [:tuple double? double?]]])

Validate

(def Address
 [:map
 [:street string?]
 [:city string?]
 [:zip int?]
 [:lonlat [:tuple double? double?]]])

Validate
"Does this value conform to this spec?"

(def Address
 [:map
 [:street string?]
 [:city string?]
 [:zip int?]
 [:lonlat [:tuple double? double?]]])

Validate
"Does this value conform to this spec?"

(explain
 Address
 {:street "Washington Ave",
 :city "Madison"}))
=>
{:zip ["missing required key"],
 :lonlat ["missing required key"]}

(def Address
 [:map
 [:street string?]
 [:city string?]
 [:zip int?]
 [:lonlat [:tuple double? double?]]])

Validate
"Does this value conform to this spec?"

(explain
 Address
 {:street "Washington Ave",
 :city "Madison"}))
=>
{:zip ["missing required key"],
 :lonlat ["missing required key"]}

(def Address
 [:map
 [:street string?]
 [:city string?]
 [:zip int?]
 [:lonlat [:tuple double? double?]]])

Validate
"Does this value conform to this spec?"

(explain
 Address
 {:street "Washington Ave",
 :city "Madison"}))
=>
{:zip ["missing required key"],
 :lonlat ["missing required key"]}

(def Address
 [:map
 [:street string?]
 [:city string?]
 [:zip int?]
 [:lonlat [:tuple double? double?]]])

Validate
"Does this value conform to this spec?"

(explain
 Address
 {:street "Washington Ave",
 :city "Madison"}))
=>
{:zip ["missing required key"],
 :lonlat ["missing required key"]}

(def Address
 [:map
 [:street string?]
 [:city string?]
 [:zip int?]
 [:lonlat [:tuple double? double?]]])

Validate Generate
"Does this value conform to this spec?"

(explain
 Address
 {:street "Washington Ave",
 :city "Madison"}))
=>
{:zip ["missing required key"],
 :lonlat ["missing required key"]}

(def Address
 [:map
 [:street string?]
 [:city string?]
 [:zip int?]
 [:lonlat [:tuple double? double?]]])

Validate Generate
"Does this value conform to this spec?" "Create an example value for this spec."

(explain
 Address
 {:street "Washington Ave",
 :city "Madison"}))
=>
{:zip ["missing required key"],
 :lonlat ["missing required key"]}

(def Address
 [:map
 [:street string?]
 [:city string?]
 [:zip int?]
 [:lonlat [:tuple double? double?]]])

Validate Generate
"Does this value conform to this spec?" "Create an example value for this spec."

(generate Address)
=>
{:street "OD89l6M7fZ3gGz48eNRZz86Q3l00",
 :city "",
 :zip -1,
 :lonlat [96.5218505859375 -156.7041015625]}

(explain
 Address
 {:street "Washington Ave",
 :city "Madison"}))
=>
{:zip ["missing required key"],
 :lonlat ["missing required key"]}

(def Address
 [:map
 [:street string?]
 [:city string?]
 [:zip int?]
 [:lonlat [:tuple double? double?]]])

Validate Generate
"Does this value conform to this spec?" "Create an example value for this spec."

(generate Address)
=>
{:street "OD89l6M7fZ3gGz48eNRZz86Q3l00",
 :city "",
 :zip -1,
 :lonlat [96.5218505859375 -156.7041015625]}

(explain
 Address
 {:street "Washington Ave",
 :city "Madison"}))
=>
{:zip ["missing required key"],
 :lonlat ["missing required key"]}

(def Address
 [:map
 [:street string?]
 [:city string?]
 [:zip int?]
 [:lonlat [:tuple double? double?]]])

Validate Generate
"Does this value conform to this spec?" "Create an example value for this spec."

(generate Address)
=>
{:street "OD89l6M7fZ3gGz48eNRZz86Q3l00",
 :city "",
 :zip -1,
 :lonlat [96.5218505859375 -156.7041015625]}

(explain
 Address
 {:street "Washington Ave",
 :city "Madison"}))
=>
{:zip ["missing required key"],
 :lonlat ["missing required key"]}

(def Address
 [:map
 [:street string?]
 [:city string?]
 [:zip int?]
 [:lonlat [:tuple double? double?]]])

Validate Generate
"Does this value conform to this spec?" "Create an example value for this spec."

(generate Address)
=>
{:street "OD89l6M7fZ3gGz48eNRZz86Q3l00",
 :city "",
 :zip -1,
 :lonlat [96.5218505859375 -156.7041015625]}

(explain
 Address
 {:street "Washington Ave",
 :city "Madison"}))
=>
{:zip ["missing required key"],
 :lonlat ["missing required key"]}

(def Address
 [:map
 [:street string?]
 [:city string?]
 [:zip int?]
 [:lonlat [:tuple double? double?]]])

Validate Generate
"Does this value conform to this spec?" "Create an example value for this spec."

(generate Address)
=>
{:street "OD89l6M7fZ3gGz48eNRZz86Q3l00",
 :city "",
 :zip -1,
 :lonlat [96.5218505859375 -156.7041015625]}

(explain
 Address
 {:street "Washington Ave",
 :city "Madison"}))
=>
{:zip ["missing required key"],
 :lonlat ["missing required key"]}

(=> address-street [:=> Address string?])
(defn address-street [address]
 (:street address))

(=> address-street [:=> Address string?])
(defn address-street [address]
 (:street address))

(=> address-street [:=> Address string?])
(defn address-street [address]
 (:street address))

(=> address-street [:=> Address string?])
(defn address-street [address]
 (:street address))

Instrument

(=> address-street [:=> Address string?])
(defn address-street [address]
 (:street address))

Instrument

(defn address-street [address]
 (coerce Address address)
 (coerce string? (:street address)))

(=> address-street [:=> Address string?])
(defn address-street [address]
 (:street address))

Instrument

(defn address-street [address]
 (coerce Address address)
 (coerce string? (:street address)))

(=> address-street [:=> Address string?])
(defn address-street [address]
 (:street address))

Instrument

(defn address-street [address]
 (coerce Address address)
 (coerce string? (:street address)))

(=> address-street [:=> Address string?])
(defn address-street [address]
 (:street address))

Instrument

(defn address-street [address]
 (coerce Address address)
 (coerce string? (:street address)))

(=> address-street [:=> Address string?])
(defn address-street [address]
 (:street address))

Instrument

(defn address-street [address]
 (coerce Address address)
 (coerce string? (:street address)))

(address-street {:street 52 ...})

(=> address-street [:=> Address string?])
(defn address-street [address]
 (:street address))

Instrument

(defn address-street [address]
 (coerce Address address)
 (coerce string? (:street address)))

(address-street {:street 52 ...})

(=> address-street [:=> Address string?])
(defn address-street [address]
 (:street address))

Instrument

(defn address-street [address]
 (coerce Address address)
 (coerce string? (:street address)))

(address-street {:street 52 ...})

(=> address-street [:=> Address string?])
(defn address-street [address]
 (:street address))

Instrument

(defn address-street [address]
 (coerce Address address)
 (coerce string? (:street address)))

(address-street {:street 52 ...})

(=> address-street [:=> Address string?])
(defn address-street [address]
 (:street address))

Instrument Exercise

(defn address-street [address]
 (coerce Address address)
 (coerce string? (:street address)))

(address-street {:street 52 ...})

(=> address-street [:=> Address string?])
(defn address-street [address]
 (:street address))

Instrument Exercise

(defn address-street [address]
 (coerce Address address)
 (coerce string? (:street address)))

(address-street {:street 52 ...})

(=> address-street [:=> Address string?])
(defn address-street [address]
 (:street address))

Instrument Exercise

(defn address-street [address]
 (coerce Address address)
 (coerce string? (:street address)))

(validate string?
 (address-street (generate Address)))

(address-street {:street 52 ...})

(=> address-street [:=> Address string?])
(defn address-street [address]
 (:street address))

Instrument Exercise

(defn address-street [address]
 (coerce Address address)
 (coerce string? (:street address)))

(validate string?
 (address-street (generate Address)))

(address-street {:street 52 ...})

(=> address-street [:=> Address string?])
(defn address-street [address]
 (:street address))

Instrument Exercise

(defn address-street [address]
 (coerce Address address)
 (coerce string? (:street address)))

(validate string?
 (address-street (generate Address)))

(address-street {:street 52 ...})

(=> address-street [:=> Address string?])
(defn address-street [address]
 (:street address))

Instrument Exercise

(defn address-street [address]
 (coerce Address address)
 (coerce string? (:street address)))

(validate string?
 (address-street (generate Address)))

(address-street {:street 52 ...})

(=> address-street [:=> Address string?])
(defn address-street [address]
 (:street address))

Instrument Exercise

(defn address-street [address]
 (coerce Address address)
 (coerce string? (:street address)))

(validate string?
 (address-street (generate Address)))

(address-street {:street 52 ...})

(=> address-street [:=> Address string?])
(defn address-street [address]
 (:street address))

Instrument Exercise

(defn address-street [address]
 (coerce Address address)
 (coerce string? (:street address)))

(validate string?
 (address-street (generate Address)))

(address-street {:street 52 ...})

Oh! I have
everything I need to
test this program all

by myself!

(=> address-street [:=> Address string?])
(defn address-street [address]
 (:street address))

Instrument Exercise

(defn address-street [address]
 (coerce Address address)
 (coerce string? (:street address)))

(validate string?
 (address-street (generate Address)))

(address-street {:street 52 ...})

Oh! I have
everything I need to
test this program all

by myself! Let's try this...

(=> address-street [:=> Address string?])
(defn address-street [address]
 (:street address))

Instrument Exercise

(defn address-street [address]
 (coerce Address address)
 (coerce string? (:street address)))

(validate string?
 (address-street (generate Address)))

(address-street {:street 52 ...})
(address-street {:street "random" ...})
=> "random"

Oh! I have
everything I need to
test this program all

by myself! Let's try this...

(=> address-street [:=> Address string?])
(defn address-street [address]
 (:street address))

Instrument Exercise

(defn address-street [address]
 (coerce Address address)
 (coerce string? (:street address)))

(validate string?
 (address-street (generate Address)))

(address-street {:street 52 ...})
(address-street {:street "random" ...})
=> "random"

Oh! I have
everything I need to
test this program all

by myself! Let's try this...

(=> address-street [:=> Address string?])
(defn address-street [address]
 (:street address))

Instrument Exercise

(defn address-street [address]
 (coerce Address address)
 (coerce string? (:street address)))

(validate string?
 (address-street (generate Address)))

(address-street {:street 52 ...})
(address-street {:street "random" ...})
=> "random"

Oh! I have
everything I need to
test this program all

by myself! Let's try this...

It worked!! I can't
wait to tell the

programmer what a good
job they did!

I can help you find even
more mistakes if you make a

really specific spec!

I can help you find even
more mistakes if you make a

really specific spec!Oh! I want you to check
something specific about
this program, but I don't

think you support it!

I can help you find even
more mistakes if you make a

really specific spec!Oh! I want you to check
something specific about
this program, but I don't

think you support it!

is talk

Spec

Leveling-Up
Function

Specs

???

Data flow

"Returns its argument."

identity

(identity "a") => "a"

"Returns its argument."

identity

(identity 1) => 1

(identity "a") => "a"

"Returns its argument."

identity

(identity 1) => 1

(identity "a") => "a"

(identity nil) => nil

"Returns its argument."

identity

(identity 1) => 1

(identity "a") => "a"

(identity nil) => nil

"Returns its argument."

identity

(identity 1) => 1

(identity "a") => "a"

(identity nil) => nil

"Returns its argument."

identity

(identity 1) => 1

(identity "a") => "a"

(identity nil) => nil

"Returns its argument."

identity

(identity 1) => 1

(identity "a") => "a"

(identity nil) => nil

"Returns its argument."

identity

"Returns its argument."

identity

"Returns its argument."

identity

Any -> Any

"Returns its argument."

identity

Any -> Any

spec any? -> any?

"Returns its argument."

identity

Any -> Any

spec any? -> any?

malli :any -> :any

"Returns its argument."

identity

Any -> Any

spec any? -> any?

malli :any -> :any

"Returns its argument."

identity

"Returns its argument."

identity

Any -> Any

"Returns its argument."

identity

Any -> Any
Int|Bool -> Int|Bool

"Returns its argument."

identity

Any -> Any

Int -> Int
Int|Bool -> Int|Bool

"Returns its argument."

identity

Any -> Any

Int -> Int
Bool -> Bool

Int|Bool -> Int|Bool

"Returns its argument."

identity

Any -> Any

Int -> Int
Bool -> Bool

(eq 1) -> (eq 1)

Int|Bool -> Int|Bool

"Returns its argument."

identity

Any -> Any

Int -> Int
Bool -> Bool

(eq 1) -> (eq 1)

Int|Bool -> Int|Bool}

"Returns its argument."

identity

Any -> Any

Int -> Int
Bool -> Bool

(eq 1) -> (eq 1)

Int|Bool -> Int|Bool
for all specs X,

X -> X}

"Returns its argument."

identity

Any -> Any

Int -> Int
Bool -> Bool

(eq 1) -> (eq 1)

Int|Bool -> Int|Bool
for all specs X,

X -> X}

typed.clj.spec

"Returns its argument."

identity

for all specs X,
X -> X

"Returns its argument."

identity

for all specs X,
X -> X

"Returns its argument."

identity

for all specs X,
X -> X

https://tinyurl.com/typed-clj-spec

https://tinyurl.com/typed-clj-spec

"Returns its argument."

identity

for all specs X,
X -> X

https://tinyurl.com/typed-clj-spec

https://tinyurl.com/typed-clj-spec

"Returns its argument."

identity

"Returns its argument."

identity

"Returns its argument."

identity

"Returns its argument."

identity

Any -> Any

Int -> Int
Bool -> Bool

(eq 1) -> (eq 1)

Int|Bool -> Int|Bool
for all specs X,

X -> X}

"Returns its argument."

identity

Any -> Any

Int -> Int
Bool -> Bool

(eq 1) -> (eq 1)

Int|Bool -> Int|Bool
for all specs X,

X -> X}
I'll write this!

"Returns its argument."

identity

Any -> Any

Int -> Int
Bool -> Bool

(eq 1) -> (eq 1)

Int|Bool -> Int|Bool
for all specs X,

X -> X}
I'll write this!I'll check

these!

(map (fn [n]
 (+ 1 n))
 [1 2 3])
=> (2 3 4)

"Applies the function to each element of the collection."

map

(map (fn [n]
 (+ 1 n))
 [1 2 3])
=> (2 3 4)

"Applies the function to each element of the collection."

map

(map (fn [n]
 (+ 1 n))
 [1 2 3])
=> (2 3 4)

"Applies the function to each element of the collection."

map

(map (fn [n]
 (+ 1 n))
 [1 2 3])
=> (2 3 4)

"Applies the function to each element of the collection."

map

(map (fn [n]
 (+ 1 n))
 [1 2 3])
=> (2 3 4)

"Applies the function to each element of the collection."

map

(map (fn [n]
 (+ 1 n))
 [1 2 3])
=> (2 3 4)

"Applies the function to each element of the collection."

map

(map (fn [n]
 (+ 1 n))
 [1 2 3])
=> (2 3 4)

"Applies the function to each element of the collection."

map

(map (fn [n]
 (+ 1 n))
 [1 2 3])
=> (2 3 4)

"Applies the function to each element of the collection."

map

(map (fn [n]
 (+ 1 n))
 [1 2 3])
=> (2 3 4)

"Applies the function to each element of the collection."

map

(map (fn [n]
 (+ 1 n))
 [1 2 3])
=> (2 3 4)

"Applies the function to each element of the collection."

map

(map (fn [n]
 (+ 1 n))
 [1 2 3])
=> (2 3 4)

"Applies the function to each element of the collection."

map

(map (fn [n]
 (+ 1 n))
 [1 2 3])
=> (2 3 4)

"Applies the function to each element of the collection."

map

(map (fn [n]
 (+ 1 n))
 [1 2 3])
=> (2 3 4)

"Applies the function to each element of the collection."

map

"Applies the function to each element of the collection."

map

(Any->Any) [Any] -> [Any]

"Applies the function to each element of the collection."

map

(Any->Any) [Any] -> [Any]

spec
(any? -> any?) (every any?) ->
(every any?)

"Applies the function to each element of the collection."

map

(Any->Any) [Any] -> [Any]

spec
(any? -> any?) (every any?) ->
(every any?)

malli [:=> :any :any] [:sequential :any :any] ->
[:sequential :any]

"Applies the function to each element of the collection."

map

(Any->Any) [Any] -> [Any]

spec
(any? -> any?) (every any?) ->
(every any?)

malli [:=> :any :any] [:sequential :any :any] ->
[:sequential :any]

"Applies the function to each element of the collection."

map

"Applies the function to each element of the collection."

map

(Any->Any)[Any]->[Any]

"Applies the function to each element of the collection."

map

(Any->Any)[Any]->[Any]

(Int->Str)[Int]->[Str]

"Applies the function to each element of the collection."

map

(Any->Any)[Any]->[Any]

(Int->Str)[Int]->[Str]

"Applies the function to each element of the collection."

map

(1->2)[1]->[2]

(Any->Any)[Any]->[Any]

(Int->Str)[Int]->[Str]}
"Applies the function to each element of the collection."

map

(1->2)[1]->[2]

(Any->Any)[Any]->[Any]

(Int->Str)[Int]->[Str]
for all specs X,Y,
(X->Y)[X]->[Y]}

"Applies the function to each element of the collection."

map

(1->2)[1]->[2]

(Any->Any)[Any]->[Any]

(Int->Str)[Int]->[Str]
for all specs X,Y,
(X->Y)[X]->[Y]}

"Applies the function to each element of the collection."

map

(1->2)[1]->[2]

(Any->Any)[Any]->[Any]

(Int->Str)[Int]->[Str]
for all specs X,Y,
(X->Y)[X]->[Y]}

"Applies the function to each element of the collection."

map

(1->2)[1]->[2]

"Applies the function to each element of the collection."

map

for all specs X,Y,
(X->Y)[X]->[Y]

"Applies the function to each element of the collection."

map

for all specs X,Y,
(X->Y)[X]->[Y]

"Applies the function to each element of the collection."

map

for all specs X,Y,
(X->Y)[X]->[Y]

"Applies the function to each element of the collection."

map

for all specs X,Y,
(X->Y)[X]->[Y]

"Applies the function to each element of the collection."

map

for all specs X,Y,
(X->Y)[X]->[Y]

"Applies the function to each element of the collection."

map

for all specs X,Y,
(X->Y)[X]->[Y]

"Applies the function to each element of the collection."

map

"Applies the function to each element of the collection."

map

"Applies the function to each element of the collection."

map

(Any->Any)[Any]->[Any]

(Int->Str)[Int]->[Str]
for all specs X,Y,
(X->Y)[X]->[Y]}

"Applies the function to each element of the collection."

map

(1->2)[1]->[2]

(Any->Any)[Any]->[Any]

(Int->Str)[Int]->[Str]
for all specs X,Y,
(X->Y)[X]->[Y]}

"Applies the function to each element of the collection."

map

(1->2)[1]->[2]
I'll write this!

(Any->Any)[Any]->[Any]

(Int->Str)[Int]->[Str]
for all specs X,Y,
(X->Y)[X]->[Y]}

"Applies the function to each element of the collection."

map

(1->2)[1]->[2]
I'll write this!I'll check

these!

(comp f g)
=>
(fn [x]
 (f (g x))

 "Takes functions f and g, returning function applying g then f."

comp

(comp f g)
=>
(fn [x]
 (f (g x))

 "Takes functions f and g, returning function applying g then f."

comp

(comp f g)
=>
(fn [x]
 (f (g x))

 "Takes functions f and g, returning function applying g then f."

comp

(comp f g)
=>
(fn [x]
 (f (g x))

 "Takes functions f and g, returning function applying g then f."

comp

(comp f g)
=>
(fn [x]
 (f (g x))

 "Takes functions f and g, returning function applying g then f."

comp

(comp f g)
=>
(fn [x]
 (f (g x))

 "Takes functions f and g, returning function applying g then f."

comp

(comp f g)
=>
(fn [x]
 (f (g x))

 "Takes functions f and g, returning function applying g then f."

comp

 "Takes functions f and g, returning function applying g then f."

comp

(Any->Any)(Any->Any)->(Any->Any)

 "Takes functions f and g, returning function applying g then f."

comp

(Any->Any)(Any->Any)->(Any->Any)

spec (any?->any?)(any?->any?)->(any?->any?)

 "Takes functions f and g, returning function applying g then f."

comp

(Any->Any)(Any->Any)->(Any->Any)

spec (any?->any?)(any?->any?)->(any?->any?)

malli [:=> :any :any][:=> :any :any]->
[:=> :any :any]

 "Takes functions f and g, returning function applying g then f."

comp

(Any->Any)(Any->Any)->(Any->Any)

spec (any?->any?)(any?->any?)->(any?->any?)

malli [:=> :any :any][:=> :any :any]->
[:=> :any :any]

 "Takes functions f and g, returning function applying g then f."

comp

 "Takes functions f and g, returning function applying g then f."

comp

(Any->Any)(Any->Any)->
(Any->Any)

 "Takes functions f and g, returning function applying g then f."

comp

(Any->Any)(Any->Any)->
(Any->Any)

(Bool->Str)(Int->Bool)->
(Int->Str)

 "Takes functions f and g, returning function applying g then f."

comp

(Any->Any)(Any->Any)->
(Any->Any)

(Bool->Str)(Int->Bool)->
(Int->Str)

 "Takes functions f and g, returning function applying g then f."

comp

(2->3)(1->2)->
(1->3)

(Any->Any)(Any->Any)->
(Any->Any)

(Bool->Str)(Int->Bool)->
(Int->Str) }

 "Takes functions f and g, returning function applying g then f."

comp

(2->3)(1->2)->
(1->3)

(Any->Any)(Any->Any)->
(Any->Any)

(Bool->Str)(Int->Bool)->
(Int->Str)

for all specs X,Y,Z,
(Y->Z)(X->Y)->(X->Z)}

 "Takes functions f and g, returning function applying g then f."

comp

(2->3)(1->2)->
(1->3)

(Any->Any)(Any->Any)->
(Any->Any)

(Bool->Str)(Int->Bool)->
(Int->Str)

for all specs X,Y,Z,
(Y->Z)(X->Y)->(X->Z)}

 "Takes functions f and g, returning function applying g then f."

comp

(2->3)(1->2)->
(1->3)

(Any->Any)(Any->Any)->
(Any->Any)

(Bool->Str)(Int->Bool)->
(Int->Str)

for all specs X,Y,Z,
(Y->Z)(X->Y)->(X->Z)}

 "Takes functions f and g, returning function applying g then f."

comp

(2->3)(1->2)->
(1->3)

(Any->Any)(Any->Any)->
(Any->Any)

(Bool->Str)(Int->Bool)->
(Int->Str)

for all specs X,Y,Z,
(Y->Z)(X->Y)->(X->Z)}

 "Takes functions f and g, returning function applying g then f."

comp

(2->3)(1->2)->
(1->3)

for all specs X,Y,Z,
(Y->Z)(X->Y)->(X->Z)

 "Takes functions f and g, returning function applying g then f."

comp

for all specs X,Y,Z,
(Y->Z)(X->Y)->(X->Z)

 "Takes functions f and g, returning function applying g then f."

comp

for all specs X,Y,Z,
(Y->Z)(X->Y)->(X->Z)

 "Takes functions f and g, returning function applying g then f."

comp

for all specs X,Y,Z,
(Y->Z)(X->Y)->(X->Z)

 "Takes functions f and g, returning function applying g then f."

comp

for all specs X,Y,Z,
(Y->Z)(X->Y)->(X->Z)

 "Takes functions f and g, returning function applying g then f."

comp

for all specs X,Y,Z,
(Y->Z)(X->Y)->(X->Z)

 "Takes functions f and g, returning function applying g then f."

comp

for all specs X,Y,Z,
(Y->Z)(X->Y)->(X->Z)

 "Takes functions f and g, returning function applying g then f."

comp

for all specs X,Y,Z,
(Y->Z)(X->Y)->(X->Z)

 "Takes functions f and g, returning function applying g then f."

comp

 "Takes functions f and g, returning function applying g then f."

comp

 "Takes functions f and g, returning function applying g then f."

comp

 "Takes functions f and g, returning function applying g then f."

comp

(Any->Any)(Any->Any)->
(Any->Any)

(Bool->Str)(Int->Bool)->
(Int->Str)

for all specs X,Y,Z,
(Y->Z)(X->Y)->(X->Z)}

 "Takes functions f and g, returning function applying g then f."

comp

(2->3)(1->2)->
(1->3)

(Any->Any)(Any->Any)->
(Any->Any)

(Bool->Str)(Int->Bool)->
(Int->Str)

for all specs X,Y,Z,
(Y->Z)(X->Y)->(X->Z)}

 "Takes functions f and g, returning function applying g then f."

comp

(2->3)(1->2)->
(1->3)

I'll write this!

(Any->Any)(Any->Any)->
(Any->Any)

(Bool->Str)(Int->Bool)->
(Int->Str)

for all specs X,Y,Z,
(Y->Z)(X->Y)->(X->Z)}

 "Takes functions f and g, returning function applying g then f."

comp

(2->3)(1->2)->
(1->3)

I'll write this!I'll check
these!

Spec

Leveling-Up
Function

Specs

Spec

Leveling-Up
Function

Specs

Specs for specs

Now with Specs for Specs,
I can help you find more

mistakes!!

Now with Specs for Specs,
I can help you find more

mistakes!!Specs for specs
help me better

explain my
program!!

Now with Specs for Specs,
I can help you find more

mistakes!!Specs for specs
help me better

explain my
program!!

anks

Now with Specs for Specs,
I can help you find more

mistakes!!Specs for specs
help me better

explain my
program!!

anks

https://tinyurl.com/typed-clj-spec
https://github.com/typedclojure/typedclojure/blob/main/typed/clj.spec/README.md

https://tinyurl.com/typed-clj-spec
https://github.com/typedclojure/typedclojure/blob/main/typed/clj.spec/README.md

