
Stream starting
soon…

Leveling Up
 Clojure Runtime Specs

Ambrose Bonnaire-Sergeant

Madison Clojure

Leveling Up
 Clojure Runtime

Specs
Ambrose Bonnaire-Sergeant

Programming
before Specs

1. Write the program
2. Try to break it
3. Fix the program

f(x)=1
“Takes an argument x and returns x.”

f(1)=>1
f(“hello”)=>“hello”

f(1)=>1
f(“hello”)=>“hello”

f(x)=x

f(1)=>1
f(“hello”)=>“hello”

“Takes an argument x and returns x.”

Programming
after Specs

1. Write the program
2. Write a "spec"
3. ?????????????
4. Fix the program

I just wrote a
program!

anks!!

f(x)=1
I can check your

program for mistakes if you
give me a spec!

Spec
f(x)=1

Here's a Spec
explaining how it

should work!

anks!
Checking your

program against
the spec...

f(x)=1

Oh, your
program has a

mistake! Here's
where it went

wrong...
Whoops! Let me

fix that...

f(x)=x

ere! Try again
please?

Looks good
to me!

clojure.spec
Malli

Intro to specs
(via Malli)

{:street "Washington Ave",
 :city "Madison"
 :zip 53701
 :lonlat [43.0812792448301, -89.37430643983365]}

(def Address
 [:map
 [:street string?]
 [:city string?]
 [:zip int?]
 [:lonlat [:tuple double? double?]]])

Spec for Addresses
Address

{:street "Washington Ave",
 :city "Madison"
 :zip 53701
 :lonlat [43.0812792448301, -89.37430643983365]}

(def Address
 [:map
 [:street string?]
 [:city string?]
 [:zip int?]
 [:lonlat [:tuple double? double?]]])

{:street "Washington Ave",
 :city "Madison"
 :zip 53701
 :lonlat [43.0812792448301, -89.37430643983365]}

(def Address
 [:map
 [:street string?]
 [:city string?]
 [:zip int?]
 [:lonlat [:tuple double? double?]]])

{:street "Washington Ave",
 :city "Madison"
 :zip 53701
 :lonlat [43.0812792448301, -89.37430643983365]}

(def Address
 [:map
 [:street string?]
 [:city string?]
 [:zip int?]
 [:lonlat [:tuple double? double?]]])

{:street "Washington Ave",
 :city "Madison"
 :zip 53701
 :lonlat [43.0812792448301, -89.37430643983365]}

(def Address
 [:map
 [:street string?]
 [:city string?]
 [:zip int?]
 [:lonlat [:tuple double? double?]]])

(def Address
 [:map
 [:street string?]
 [:city string?]
 [:zip int?]
 [:lonlat [:tuple double? double?]]])

Validate Generate
"Does this value conform to this spec?" "Create an example value for this spec."

(generate Address)
=>
{:street "OD89l6M7fZ3gGz48eNRZz86Q3l00",
 :city "",
 :zip -1,
 :lonlat [96.5218505859375 -156.7041015625]}

(explain
 Address
 {:street "Washington Ave",
 :city "Madison"}))
=>
{:zip ["missing required key"],
 :lonlat ["missing required key"]}

(=> address-street [:=> Address string?])
(defn address-street [address]
 (:street address))

Instrument Exercise

(defn address-street [address]
 (coerce Address address)
 (coerce string? (:street address)))

(validate string?
 (address-street (generate Address)))

(address-street {:street 52 ...})
(address-street {:street "random" ...})
=> "random"

Oh! I have
everything I need to
test this program all

by myself! Let's try this...

It worked!! I can't
wait to tell the

programmer what a good
job they did!

I can help you find even
more mistakes if you make a

really specific spec!Oh! I want you to check
something specific about
this program, but I don't

think you support it!

is talk

Spec

Leveling-Up
Function

Specs

???

Data flow

(identity 1) => 1

(identity "a") => "a"

(identity nil) => nil

"Returns its argument."

identity

"Returns its argument."

identity

Any -> Any

spec any? -> any?

malli :any -> :any

"Returns its argument."

identity

Any -> Any

Int -> Int
Bool -> Bool

(eq 1) -> (eq 1)

Int|Bool -> Int|Bool
for all specs X,

X -> X}

typed.clj.spec

"Returns its argument."

identity

for all specs X,
X -> X

https://tinyurl.com/typed-clj-spec

https://tinyurl.com/typed-clj-spec

"Returns its argument."

identity

"Returns its argument."

identity

Any -> Any

Int -> Int
Bool -> Bool

(eq 1) -> (eq 1)

Int|Bool -> Int|Bool
for all specs X,

X -> X}
I'll write this!I'll check

these!

(map (fn [n]
 (+ 1 n))
 [1 2 3])
=> (2 3 4)

"Applies the function to each element of the collection."

map

(map (fn [n]
 (+ 1 n))
 [1 2 3])
=> (2 3 4)

"Applies the function to each element of the collection."

map

(map (fn [n]
 (+ 1 n))
 [1 2 3])
=> (2 3 4)

"Applies the function to each element of the collection."

map

(map (fn [n]
 (+ 1 n))
 [1 2 3])
=> (2 3 4)

"Applies the function to each element of the collection."

map

(Any->Any) [Any] -> [Any]

spec
(any? -> any?) (every any?) ->
(every any?)

malli [:=> :any :any] [:sequential :any :any] ->
[:sequential :any]

"Applies the function to each element of the collection."

map

(Any->Any)[Any]->[Any]

(Int->Str)[Int]->[Str]
for all specs X,Y,
(X->Y)[X]->[Y]}

"Applies the function to each element of the collection."

map

(1->2)[1]->[2]

"Applies the function to each element of the collection."

map

for all specs X,Y,
(X->Y)[X]->[Y]

"Applies the function to each element of the collection."

map

(Any->Any)[Any]->[Any]

(Int->Str)[Int]->[Str]
for all specs X,Y,
(X->Y)[X]->[Y]}

"Applies the function to each element of the collection."

map

(1->2)[1]->[2]
I'll write this!I'll check

these!

(comp f g)
=>
(fn [x]
 (f (g x))

 "Takes functions f and g, returning function applying g then f."

comp

(Any->Any)(Any->Any)->(Any->Any)

spec (any?->any?)(any?->any?)->(any?->any?)

malli [:=> :any :any][:=> :any :any]->
[:=> :any :any]

 "Takes functions f and g, returning function applying g then f."

comp

(Any->Any)(Any->Any)->
(Any->Any)

(Bool->Str)(Int->Bool)->
(Int->Str)

for all specs X,Y,Z,
(Y->Z)(X->Y)->(X->Z)}

 "Takes functions f and g, returning function applying g then f."

comp

(2->3)(1->2)->
(1->3)

for all specs X,Y,Z,
(Y->Z)(X->Y)->(X->Z)

 "Takes functions f and g, returning function applying g then f."

comp

 "Takes functions f and g, returning function applying g then f."

comp

(Any->Any)(Any->Any)->
(Any->Any)

(Bool->Str)(Int->Bool)->
(Int->Str)

for all specs X,Y,Z,
(Y->Z)(X->Y)->(X->Z)}

 "Takes functions f and g, returning function applying g then f."

comp

(2->3)(1->2)->
(1->3)

I'll write this!I'll check
these!

Spec

Leveling-Up
Function

Specs

Specs for specs

Now with Specs for Specs,
I can help you find more

mistakes!!Specs for specs
help me better

explain my
program!!

anks

https://tinyurl.com/typed-clj-spec
https://github.com/typedclojure/typedclojure/blob/main/typed/clj.spec/README.md

https://tinyurl.com/typed-clj-spec
https://github.com/typedclojure/typedclojure/blob/main/typed/clj.spec/README.md

