LA,

m Leveling Up

2™ Clojure Runtime Specs

Madison Clojure

-

—J _ ——
/l "“““

S

y 2 R Ambrose Bonnaire-Sergeant
&y cgr \
A1

o L ’ . / ‘ 1 ‘ | | v‘ L
g ‘l = ¥ \! I "

Stream starting

Clojure Runtime ..
SPECS /f;? At \\

Ambrose Bonnaire-Sergeant

J . a
> s - q—:_
! y
v

‘ ".‘ -
| —
k ~——

Programming

before Specs

1. Write the program
2. Tryto break it
3. Fix the program

f(x)=1

w

“Takes an argument x and returns x.”

f(1)=>1
f(“hello”)=>“hello”)

f(x)=X

w

“Takes an argument x and returns x.”

f(1)=>1
f(“hello”)=>“hello”

Programming
after Specs

Write the program

1.

2. Write a 'spec
3 2'0°0°0°0°070°0°0°270°07
4.

Fix the program

| just wrote a

program!

o g |tX)=1

program for mistakes if you
give me a spec!

I—Ielfe sa Spec | Thanks!
explaining how it
should work!

Checking your
program against
the spec...

Whoops! Let me
fix that...

Oh, your
program has a
mistake! Here's
where it went
wrong...

/\schema

clojure. spec

There! Try again
please?

D,

Looks good
to me!

Intro to specs
(via Malli)

{ :street "Washington Ave",
city "Madison”
z1p 53701
lonlat [43.0812792448301, -89.37430643983365] }

\ Address
(def Address

| :ma
. | / Spec for Addresses

:street string?

:city string?]

zip int?]

:lonlat |[:tuple double? double?]|]])

.street "Washington Ave'",
:C1Ty Madison

z1p 53701
lonlat [43.0812792448301, -89.37430643983365] }

(def Address

IClty string:
zip int?]
:lonlat |[:tuple double? double?]|]])

=¥= lashington Ave",

.city "Madison”
z1p 53701
lonlat [43.0812792448301, -89.37430643983365] }

(def Address
' rmap

city string?]
IZ1p 1nT:
:lonlat |[:tuple double? double?]|]])

{:street "Washington Ave",
| 3dison”

. z1p 53701

onla 43.0812792448301, -89.37430643983365] }

(def Address

' rmap
:street string?]

{:street "Washington Ave",
city "Madison”
1p 03701
- lonlat [43.0812792448301, -89.37430643983365 |}

(def Address

' rmap
:street string?]
:city string?]

| :lonlat |:tuple double? double?]]

(def Address
| :map
:street string?]
city string?]
:zip int?]
:lonlat [:tuple double? double?]|]])

Validate Generate
"Does this value conform to this spec?” "Create an example value for this spec.”
(explain (generate Address)
Address N

{ 1street "Washington Ave",
city "Madison"}

' oot~ OD8916MT7£23gGz48eNRZ2z36Q3100"

»lonlat [96.5218500809370 —1056.7041015625

(=> address-street [:=>

(defn address-street [address Ol T have

('street address)) everything I need to
test this program all

by myself!

Instrument Exercise

WE—

(address-street Address)P)

(address-street {:sigfSSSESIEENR" . . })

o)) => "randomV wait to tell the

(defn address-street [address]

(coerce Address address),
Treet address)))

(address—-street {:street

programmer what a good

job they did!

[can help you find even
more mistakes if you make a

Oh! I want you to check really specific spec!
something specific about
this program, but [don't
think you support it!

297

Spec

Leveling-Up
Function
Specs

Data flow

identity

"Returns its argument.”
=> |la”

(identity ("a") => ('a"}
/N
(identity(1) =>
/\

(identity (il =>

'Returns its argument." =

N

A

* - e —

Wlaf‘-ﬁ; e _ - = - /L?
N

e

il

/\schema

Any —> Any
sSpec any? —> any?

malli any —> :any

Sequences

Create

seq
sequence
eduction

repeat
replicate

range
repeatedly
iterate
lazy-seq
lazy-cat

cycle
interleave
interpose
tree-seq
xml-seq
enumeration-seq
iterator-seq
file-seq

line-seq

Use ('Modification’)

conj

concat
distinct
group-by
partition
partition-all
partition-by
split-at
split-with
filter
filterv
remove
replace
shuffle
random-sample
flatten

sort

sort-by
reverse

dedupe

Sequences > Create

Returns a seq on the collection. If the collection is empty, returns nil. (se...
Coerces coll to a (possibly empty) sequence, if it is not already one. Will...
Returns a reducible/iterable application of the transducers to the itemsii...
Returns a lazy (infinite!, or length n if supplied) sequence of xs.
DEPRECATED: Use 'repeat’ instead. Returns a lazy seq of n xs.

Returns a lazy seq of nums from start (inclusive) to end (exclusive), by s...
Takes a function of no args, presumably with side effects, and returns a...
Returns a lazy sequence of x, (f x), (f (f x)) etc. f must be free of side-effe...
Takes a body of expressions that returns an ISeq or nil, and yields a Se...
Expands to code which yields a lazy sequence of the concatenation of t...
Returns a lazy (infinite!) sequence of repetitions of the items in coll.
Returns a lazy seq of the first item in each coll, then the second etc.
Returns a lazy seq of the elements of coll separated by sep. Returns a s...
Returns a lazy sequence of the nodes in a tree, via a depth-first walk. br...
A tree seq on the xml elements as per xml/parse

Returns a seq on a java.util. Enumeration

Returns a seq on a java.util.lterator. Note that most collections providin...
A tree seq on java.io.Files

Returns the lines of text from rdr as a lazy sequence of strings. rdr must...

Sequences > Use ('Modification')

conjloin]. Returns a new collection with the xs 'added'. (conj nil item) ret...
Returns a lazy seq representing the concatenation of the elements in th...
Returns a lazy sequence of the elements of coll with duplicates remove...
Returns a map of the elements of coll keyed by the result of f on each el...
Returns a lazy sequence of lists of n items each, at offsets step apart. If...
Returns a lazy sequence of lists like partition, but may include partitions...

Applies f to each value in coll, splitting it each time f returns a new valu...

Returns a vector of [(take n coll) (drop n coll)]

Returns a vector of [(take-while pred coll) (drop-while pred coll)]

Returns a lazy sequence of the items in coll for which (pred item) return...
Returns a vector of the items in coll for which (pred item) returns logical...
Returns a lazy sequence of the items in coll for which (pred item) return...

Given a map of replacement pairs and a vector/collection, returns a vec...

Return a random permutation of coll

Returns items from coll with random probability of prob (0.0 - 1.0). Retu...
Takes any nested combination of sequential things (lists, vectors, etc.) a...
Returns a sorted sequence of the items in coll. If no comparator is supp...

Returns a sorted sequence of the items in coll, where the sort order is d...

Returns a seq of the items in coll in reverse order. Not lazy.

Returns a lazy sequence removing consecutive duplicates in coll. Retur...

Use (General)

first
second
last

rest

next
ffirst
nfirst
fnext
nnext

nth
nthnext
nthrest
rand-nth
butlast
take
take-last
take-nth
take-while
drop
drop-last
drop-while

Use (lteration)

map
mapv
map-indexed
keep
keep-indexed
mapcat
reduce
reductions
transduce
max-key
min-key
doall

dorun

Sequences > Use (General)

Returns the first item in the collection. Calls seq on its argument. If coll i...
Same as (first (next x))

Return the last item in coll, in linear time

Returns a possibly empty seq of the items after the first. Calls seq on it...
Returns a seq of the items after the first. Calls seq on its argument. If th...
Same as (first (first x))

Same as (next (first x))

Same as (first (next x))

Same as (next (next x))

Returns the value at the index. get returns nil if index out of bounds, nth...
Returns the nth next of coll, (seq coll) when n is 0.

Returns the nth rest of coll, coll when nis 0.

Return a random element of the (sequential) collection. Will have the sa...
Return a seq of all but the last item in coll, in linear time

Returns a lazy sequence of the first n items in coll, or all items if there ar...
Returns a seq of the last n items in coll. Depending on the type of coll ...
Returns a lazy seq of every nth item in coll. Returns a stateful transduce...
Returns a lazy sequence of successive items from coll while (pred item) ...
Returns a lazy sequence of all but the first n items in coll. Returns a stat...
Return a lazy sequence of all but the last n (default 1) items in coll

Returns a lazy sequence of the items in coll starting from the first item f...

Sequences > Use (Iteration)

Returns a lazy sequence consisting of the result of applying f to the set ...
Returns a vector consisting of the result of applying f to the set of first it...
Returns a lazy sequence consisting of the result of applying fto 0 and t...
Returns a lazy sequence of the non-nil results of (f item). Note, this mea...
Returns a lazy sequence of the non-nil results of (f index item). Note, thi...
Returns the result of applying concat to the result of applying map to f a...
f should be a function of 2 arguments. If val is not supplied, returns the ...
Returns a lazy seq of the intermediate values of the reduction (as per re...
reduce with a transformation of f (xf). If init is not supplied, (f) will be call...
Returns the x for which (k x), a number, is greatest. If there are multiple ...
Returns the x for which (k x), a number, is least. If there are multiple suc...
When lazy sequences are produced via functions that have side effects,...

When lazy sequences are produced via functions that have side effects,...

Sets

Create

hash-set
set
sorted-set

sorted-set-by

conj
disj
get

Use
Transients
Create

transient

persistent!

Use (General)
conj!
pop!
assoc!

dissoc!

disj!
Vectors

Create

vector

vector-of

Lists

Create

Returns a new hash set with supplied keys. Any equal ke
Returns a set of the distinct elements of coll.
Returns a new sorted set with supplied keys. Any equal ke

Returns a new sorted set with supplied keys, using the su

conj[oin]. Returns a new collection with the xs ‘added’. (c
disj[oin]. Returns a new set of the same (hashed/sorted) ty

Returns the value mapped to key, not-found or nil if key n

Transients > Cre

Returns a new, transient version of the collection, in constant time.

Returns a new, persistent version of the transient collection, in constar

Transients > Use (Gene

Adds x to the transient collection, and return coll. The 'addition’ may h
Removes the last item from a transient vector. If the collection is empt:
When applied to a transient map, adds mapping of key(s) to val(s). Wh
Returns a transient map that doesn't contain a mapping for key(s).

disj[oin]. Returns a transient set of the same (hashed/sorted) type, that

vec Creates a new vector containing the contents o

Creates a new vector containing the args.

Creates a new vector of a single primitive type t

list Creates a new list containing the items.

identity

"Returns its argument.”

Any —> Any /schema
Int [Bool —-> Int|Bool
nt1Boo nt1Boo for all specs X,
Int —=> Int
X —> X
Bool -> Bool v, 4

(eqg 1) —> (eq 1)

typed.clj.spec

identity

"Returns its argument.”

for all specs X,
X —> X
(s/def *, «
. :identity-poly et
(t/all :binder (t/binder :x (t/bind-tv))
: body
(s/fspec :args (s/cat :x (t/tv :ix))

ret (t/tv :x Q :
" rps’/ tlnyurl com/typed-clj-spec

https://tinyurl.com/typed-clj-spec

identity

"Returns its argument.”

(tu/is—-valid ::identity-poly identiV

(tu/is—-invalid ::identity-poly (fn [x] nilz)

identity
"Returns its argument.”

Any —> Any
Int|Bool 4> Int|Bool
Int —% Int

Bool —>WBool
(eq 1) =

g

for all |specs X,
X 4> X

['ll check
these!

map

"Applies the function to each element of the collection.”

(map (fn [n]
(+ 1 n))
1 2 3])

=> (2 3 4)

map

"Applies the function to each element of the collection."

(+ 1] 1 n

map

"Applies the function to each element of the collection."

map

"Applies the function to each element of the collection."

- N

"Applies the function to each element of the collection.”

m
——

“M, —_ —
a - — A > ?
: S~ = - —— ™ == _Q«-, — == -— (L

"A ‘.

£Yschema ' (Any—>Any) [Ahy] —> [Any]

(any? -> any?) (every any?) ->
SpecC (every any?)

:=> :any :any]| |[:sequential :any :any| ->
:sequential :any]

malli

map

"Applies the function to each element of the collection."

/Yschema
(Any—->Any) [Any |-> [Any |

for all specs X,Y,
(X=>Y) [X]->[Y]
k ‘,’. ”0 "

2 ® 9
A oupe?

(Int—>Str)[Int]|->[Str]

(1->2) [1]->[2]

map

"Applies the function to each element of the collection."

for all specs X,Y,
(X—>Y) [X]->[Y]

(s/def .
: :mapl k ‘.‘ ‘0’ ‘
IS
(all :binder (binder %e % 4

A yupe?

X (bind-tv)
'y (bind-tv))
:body (s/fspec :args (s/cat :fn (s/fspec :args (s/cat :x (tv :x))

:ret (tv :y)) A

/5

:coll (s/coll-of (tv :x.))5'.. .'

:ret (s/coll-of (tv :y)w) "n,::‘o'
Ny ¢

-----.......-:

map

"Applies the function to each element of the collection."

(tu/is-valid ::mapl map)

(tu/is—invalid ::mapl (comp #(map str %) map))

map
E"Applies the function to each element of the collection.”

g

(Any—>ARy) [Any | —> [Any |

for all specs X,Y,

(Int—>Str N Int|->[Str]

(1->2) [19:-> [2

['ll check

these!

comp

"Takes functions f and g, returning function applying g then £."

comp | £)|g]
//)

(H ()

— e
A

—

spec (any?->any?)(any?->any?)->(any?->any?)

:=> :any :any]|[:=> :any :any]|->
1=> rany :any.

malli

comp

"Takes functions f and g, returning function applying g then £."

/N
(Any->Any) (Any—>Any)-> /y/schema

(Any->Any)
(Bool->Str)(Int->Bool)—>
(Int->Str)

(2=>3)(1-—>2)—>
(1->3)

for all specs X,Y, 7,
(Y=->Z)(X—>Y)—>(X—>7Z)
k “‘ k :n L

. . e @

*
o °* A

* ¢
0 3 ¢ O
..l%‘ ..-“ "

...-“

comp

"Takes functions f and g, returning function applying g then £."

for all specs X,Y, 7,

(s/def ::comp?2

G e (tpinier (Y->2) (X->Y)-> (X->2)
ra (t/bind-tv) o % k
b (t/bind-tv) o, e
:c (t/bind-tv)) ’0,.:“’

: body
(s/fspec :args (s/cat :f (s/fspec :args (s/cat :b (t/
:ret (t/ty‘ c)).
:g (s/fspec args.‘(s/cat ’g (t/tv :a))
rg‘t (t/tv :b))) ,‘
:ret (s/fspec :args (s/cat'a (t/tv a))._"’
rret (t/tv :c)))))

:b))

comp

"Takes functions f and g, returning function applying g then £."

(tu/is-valid ::comp-fspec—-fn—-gensym (fn [f g]
#(f (g %))))

(tu/is—invalid ::comp-fspec—fn—-gensym (fn [f g] #(g (f %)))

comp

"Takes functions f and g, returning function applying g then {."

(Any—>A
(Any—>An

) (Any—->Any)—>

g

(Bool->Str)(§nt->Bool)-> tor all specs X,Y, 7,

(Int->Str)

(2—>W(1->2)—>

['ll check

these!

Specs for specs

Spec

Leveling-Up
Function
Specs

https://github.com/typedclojure/typedclojure/blob/main/typed/clj.spec/README.md

https://tinyurl.com/typed-clj-spec

Now with Specs for Specs,
[can help you find more

Specs for specs mistakes!!

help me better
explain my
program!!

https://tinyurl.com/typed-clj-spec
https://github.com/typedclojure/typedclojure/blob/main/typed/clj.spec/README.md

