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What is Clojure?

3% of JVM users’ primary language is Clojure

- [JVM Ecosystem Report 2018, snyk.io]

A programming language 
running on the Java Virtual Machine

1.1% of JVM users have adopted Clojure

- [The State of Java in 2018, baeldung.com]

http://snyk.io
http://baeldung.com
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Survey: Why Clojure?

}
}
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Leverage host
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Frustrations with Clojure
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#4
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My take 
Clojure programmers need help 

specifying and verifying 
their programs
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My Thesis Statement:
Typed Clojure is a  

sound and practical 
optional type system for Clojure

Evaluation

Formalize+Sound

Typed Racket 
(prior work)

Design+ 
Implement

Evaluation
Formalize

Design+Implement

“Annotation 
burden!” - Users

I created a 
semi-automated 

workflow to port Clojure 
programs
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extend Typed Clojure to 

support custom rules
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symbolic execution with type 

checking



Part I 
Design and Evaluation 

of Typed Clojure



Symbolic 
Execution

ΩΩ

Extensible 
Typing 
Rules

Typed 
Clojure

Automatic 
Annotations

Typed Racket 
(prior work)

Evaluation

Formalize+Sound

Design+ 
Implement

Evaluation
Formalize

Design+Implement
Prototype Prototype

Published: 
“Practical Optional Types for Clojure”, Ambrose Bonnaire-Sergeant, Rowan Davies, Sam 
Tobin-Hochstadt; ESOP 2016



Symbolic 
Execution

ΩΩ

Extensible 
Typing 
Rules

Typed 
Clojure

Automatic 
Annotations

Typed Racket 
(prior work)

Evaluation

Formalize+Sound

Design+ 
Implement

Evaluation
Formalize

Design+Implement
Prototype Prototype



Check with Typed Clojure



Simple Functions

(defn	point	[x	y]	
		{:x	x,	:y	y})	

(:x	(point	1	2))	
;=>	1	
(:y	(point	1	2))	
;=>	2

Scorecard



Simple Functions

(defn	point	[x	y]	
		{:x	x,	:y	y})	

(:x	(point	1	2))	
;=>	1	
(:y	(point	1	2))	
;=>	2

(defalias	Point	
		'{:x	Int	:y	Int})

(ann	point	[Int	Int	->	Point])

Scorecard



Simple Functions

(defn	point	[x	y]	
		{:x	x,	:y	y})	

(:x	(point	1	2))	
;=>	1	
(:y	(point	1	2))	
;=>	2

(defalias	Point	
		'{:x	Int	:y	Int})

(ann	point	[Int	Int	->	Point])

Scorecard



(defn	combine	[p	f]	
		(f	(:x	p)	(:y	p)))	

(combine	(point	1	2)	+)	
;=>	3	
(combine	(point	1	2)	str)	
;=>	"12"

Higher-order functions
Scorecard



(ann	combine	
		(All	[a]	
				[Point	[Int	Int	->	a]	->	a]))
(defn	combine	[p	f]	
		(f	(:x	p)	(:y	p)))	

(combine	(point	1	2)	+)	
;=>	3	
(combine	(point	1	2)	str)	
;=>	"12"

Higher-order functions
Scorecard



(ann	combine	
		(All	[a]	
				[Point	[Int	Int	->	a]	->	a]))
(defn	combine	[p	f]	
		(f	(:x	p)	(:y	p)))	

(combine	(point	1	2)	+)	
;=>	3	
(combine	(point	1	2)	str)	
;=>	"12"

Higher-order functions
Scorecard



Type-Based Control flow

(defn	to-int	[m]	
		(if	(string?	m)	
				(Integer/parseInt	m)	
				m))	

(to-int	1)	
;=>	1	
(to-int	"2")	
;=>	2

Scorecard



Type-Based Control flow

(defn	to-int	[m]	
		(if	(string?	m)	
				(Integer/parseInt	m)	
				m))	

(to-int	1)	
;=>	1	
(to-int	"2")	
;=>	2

(ann	to-int		
		[(U	Int	Str)	->	Int])	

Scorecard



Type-Based Control flow

(defn	to-int	[m]	
		(if	(string?	m)	
				(Integer/parseInt	m)	
				m))	

(to-int	1)	
;=>	1	
(to-int	"2")	
;=>	2

(ann	to-int		
		[(U	Int	Str)	->	Int])	

Scorecard

Str

Int



Type-Based Control flow

(defn	to-int	[m]	
		(if	(string?	m)	
				(Integer/parseInt	m)	
				m))	

(to-int	1)	
;=>	1	
(to-int	"2")	
;=>	2

(ann	to-int		
		[(U	Int	Str)	->	Int])	

Scorecard

Str

Int



(defmulti	to-int-mm	class)	
(defmethod	to-int-mm	String	[m]	
		(Integer/parseInt	m))	
(defmethod	to-int-mm	Number	[m]	m)	

(to-int-mm	1)			;=>	1	
(to-int-mm	"2")	;=>	2

Multimethods
Scorecard



(defmulti	to-int-mm	class)	
(defmethod	to-int-mm	String	[m]	
		(Integer/parseInt	m))	
(defmethod	to-int-mm	Number	[m]	m)	

(to-int-mm	1)			;=>	1	
(to-int-mm	"2")	;=>	2

Multimethods
Scorecard



(defmulti	to-int-mm	class)	
(defmethod	to-int-mm	String	[m]	
		(Integer/parseInt	m))	
(defmethod	to-int-mm	Number	[m]	m)	

(to-int-mm	1)			;=>	1	
(to-int-mm	"2")	;=>	2

Multimethods
Scorecard



(defmulti	to-int-mm	class)	
(defmethod	to-int-mm	String	[m]	
		(Integer/parseInt	m))	
(defmethod	to-int-mm	Number	[m]	m)	

(to-int-mm	1)			;=>	1	
(to-int-mm	"2")	;=>	2

Multimethods
Scorecard



(defmulti	to-int-mm	class)	
(defmethod	to-int-mm	String	[m]	
		(Integer/parseInt	m))	
(defmethod	to-int-mm	Number	[m]	m)	

(to-int-mm	1)			;=>	1	
(to-int-mm	"2")	;=>	2

Multimethods
Scorecard

(ann	to-int-mm	
		[(U	Int	Str)	->	Int])



(defmulti	to-int-mm	class)	
(defmethod	to-int-mm	String	[m]	
		(Integer/parseInt	m))	
(defmethod	to-int-mm	Number	[m]	m)	

(to-int-mm	1)			;=>	1	
(to-int-mm	"2")	;=>	2

Multimethods
Scorecard

(ann	to-int-mm	
		[(U	Int	Str)	->	Int])

Str

Int



(defmulti	to-int-mm	class)	
(defmethod	to-int-mm	String	[m]	
		(Integer/parseInt	m))	
(defmethod	to-int-mm	Number	[m]	m)	

(to-int-mm	1)			;=>	1	
(to-int-mm	"2")	;=>	2

Multimethods
Scorecard

(ann	to-int-mm	
		[(U	Int	Str)	->	Int])

Str

Int



Symbolic 
Execution

ΩΩ

Extensible 
Typing 
Rules

Typed 
Clojure

Automatic 
Annotations

Typed Racket 
(prior work)

Evaluation

Formalize+Sound

Design+ 
Implement

Evaluation
Formalize

Design+Implement
Prototype Prototype



Formalism

1. Based on Occurrence Typing[1] (big-step semantics) 
2. Add Typed Clojure features: HMaps, Multimethods 
3. Add (some) Java Interop: Classes, Methods, Fields…

[1] ICFP ’10 - Tobin-Hochstadt, Felleisen



Type soundness

Well-typed programs  
don’t throw null-pointer exceptions

Well-typed programs don’t “go wrong”Theorem

Corollary
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Empirical Evaluation of Typed Clojure 

19k lines of Typed Clojure
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*Type checks?
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“Track and annotate x’s in program e”
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Intentionally unsound

Aggressively combines 
types to create compact aliases 

and recursive types

Tailored for the workflow
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Evaluation
Ported 5 open-source 
programs (~1500 LOC)

Measured the kinds of 
manual changes needed
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(ann	mult	[Int	*	:->	Int])
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(ann	initial-perm-numbers	[(Map	Int	Int)	:->	(Coll	Int)])
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(defn	parse-exp	[e]	
		(cond	
				(symbol?	e)	{:E	:var,	:name	e}	
				(false?	e)		{:E	:false}	
				(=	'n?	e)			{:E	:n?}	
				...									...		
				...									...))

Has an 
interesting 

type



(defalias	E	
		(U	

				'{:E	':app,	:args	(Vec	E),	:fun	E}	
				'{:E	':false}	
				'{:E	':if,	:else	E,	:test	E,	:then	E}	
				'{:E	':lambda,	:arg	Sym,	:arg-type	T,	:body	E}	
				'{:E	':var,	:name	Sym}))

(ann	parse-exp	[Any	:->	E])
(defn	parse-exp	[e]	
		(cond	
				(symbol?	e)	{:E	:var,	:name	e}	
				(false?	e)		{:E	:false}	
				(=	'n?	e)			{:E	:n?}	
				...									...		
				...									...))

Has an 
interesting 

type

Auto-generated 
types



(defalias	E	
		(U	

				'{:E	':app,	:args	(Vec	E),	:fun	E}	
				'{:E	':false}	
				'{:E	':if,	:else	E,	:test	E,	:then	E}	
				'{:E	':lambda,	:arg	Sym,	:arg-type	T,	:body	E}	
				'{:E	':var,	:name	Sym}))

(ann	parse-exp	[Any	:->	E])

				'{:E	':add1}	
				'{:E	':n?}

(defn	parse-exp	[e]	
		(cond	
				(symbol?	e)	{:E	:var,	:name	e}	
				(false?	e)		{:E	:false}	
				(=	'n?	e)			{:E	:n?}	
				...									...		
				...									...))

Has an 
interesting 

type

Auto-generated 
types

Manual 
changes



Manual effort

Mostly deleting/upcasting types

Adding missing cases to 
(generated) recursive types



}

Scorecard

“Annotation 
burden!”



}

Scorecard

Automatic annotations makes 
porting Clojure programs easier

“Annotation 
burden!”



Part III 
Extensible Typing Rules



Symbolic 
Execution

ΩΩ
Typed 
Clojure

Automatic 
Annotations

Typed Racket 
(prior work)

Evaluation

Formalize+Sound

Design+ 
Implement

Evaluation
Formalize

Design+Implement
Prototype Prototype

Extensible 
Typing 
Rules

“Incomprehensible 
errors!”



Problem

(for	[a	[1	2	3]]	
		(inc	a))



Problem

(for	[a	[1	2	3]]	
		(inc	a))
Type	Error:	
Static	method	clojure.lang.Numbers/inc	does	not	accept	Any



Problem

(for	[a	[1	2	3]]	
		(inc	a))
Type	Error:	
Static	method	clojure.lang.Numbers/inc	does	not	accept	Any

How to propagate type information?



Idea

(for	[a	[1	2	3]]	
		(inc	a))



Idea

(for	[a	[1	2	3]]	
		(inc	a))

Allow the user to define custom 
typing rules for macros



Roadblock: 
Expansion comes before check

Fully expand

Type check

Run

…



Roadblock: 
Expansion comes before check

Fully expand

Type check

Run

…



Roadblock: 
Expansion comes before check

Fully expand

Type check

Run

…

Already 
expanded!



Solution

Allow Typed Clojure to 
interleave macroexpansion 

and type checking



Symbolic 
Execution

ΩΩ
Typed 
Clojure

Automatic 
Annotations

Typed Racket 
(prior work)

Evaluation

Formalize+Sound

Design+ 
Implement

Evaluation
Formalize

Design+Implement
Prototype Prototype

Extensible 
Typing 
Rules



Expand
Type 
check

Run

…
*

*

Checker controls expansion



Expand as needed

I wrote a new 
Clojure code analyzer



This was non-trivial

Must also interleave evaluation

Maintains correct lexical scope

Interacts with Clojure’s type hinting system



Example type checker 
with new analyzer



If partially 
expanded…

Example type checker 
with new analyzer



{Custom rules

If partially 
expanded…

Example type checker 
with new analyzer



}

Scorecard

“Incomprehensible 
errors!”



}

Scorecard

Extensible rules Prototype: 
Improve errors, check more programs

“Incomprehensible 
errors!”



Part VI 
Symbolic Execution



Symbolic 
Execution

ΩΩ
Typed 
Clojure

Automatic 
Annotations

Typed Racket 
(prior work)

Evaluation

Formalize+Sound

Design+ 
Implement

Evaluation
Formalize

Design+Implement
Prototype Prototype

Extensible 
Typing 
Rules

“Check more 
programs!”



Goal: Reduce local annotations

(map	(fn	[p	:-	Point]	
								(+	(:x	p)	
											(:y	p)))	
					[(point	1	2)	(point	3	4)])	

(let	[f	(fn	[x	:-	Int]	x)]	
		(f	1))
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		(f	1))



Goal: Reduce local annotations

(map	(fn	[p	:-	Point]	
								(+	(:x	p)	
											(:y	p)))	
					[(point	1	2)	(point	3	4)])	

(let	[f	(fn	[x	:-	Int]	x)]	
		(f	1))



Setting: Bidirectional Checking

(map	(fn	[p	:-	?????]	
								(+	(:x	p)	
											(:y	p)))	
					[(point	1	2)	(point	3	4)])	

(let	[f	(fn	[x	:-	???]	x)]	
		(f	1))
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Type checking proceeds outside-in



Setting: Bidirectional Checking

(map	(fn	[p	:-	?????]	
								(+	(:x	p)	
											(:y	p)))	
					[(point	1	2)	(point	3	4)])	

(let	[f	(fn	[x	:-	???]	x)]	
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Setting: Bidirectional Checking

(map	(fn	[p	:-	?????]	
								(+	(:x	p)	
											(:y	p)))	
					[(point	1	2)	(point	3	4)])	

(let	[f	(fn	[x	:-	???]	x)]	
		(f	1))

Type checking proceeds outside-in

Must have type of x here

Must have type of p here



Intuition

(let	[f	(fn	[x	:-	???]	x)]	
		(f	1))

(map	(fn	[p	:-	?????]	
								(+	(:x	p)	
											(:y	p)))	
					[(point	1	2)	(point	3	4)])	



Intuition

(let	[f	(fn	[x	:-	???]	x)]	
		(f	1))

(map	(fn	[p	:-	?????]	
								(+	(:x	p)	
											(:y	p)))	
					[(point	1	2)	(point	3	4)])	



Intuition

(let	[f	(fn	[x	:-	???]	x)]	
		(f	1))

(map	(fn	[p	:-	?????]	
								(+	(:x	p)	
											(:y	p)))	
					[(point	1	2)	(point	3	4)])	



Intuition

(let	[f	(fn	[x	:-	???]	x)]	
		(f	1))

(map	(fn	[p	:-	?????]	
								(+	(:x	p)	
											(:y	p)))	
					[(point	1	2)	(point	3	4)])	



Approach

(let	[f	(fn	[x]	x)]	
		;	f	:				
		(f	1))

New type rule for checking (unannotated) functions:

????????



Approach

(let	[f	(fn	[x]	x)]	
		;	f	:				
		(f	1))

New type rule for checking (unannotated) functions:

The type of a function is its code

(fn	[x]	x)



Approach

(let	[f	(fn	[x]	x)]	
		;	f	:				
		(f	1))

New type rule for checking (unannotated) functions:

The type of a function is its code
…and the type environment it was “defined” at

Γ@(fn	[x]	x)



Approach

(let	[f	(fn	[x]	x)]	
		;	f	:				
		(f	1))

New type rule for checking (unannotated) functions:

Γ@(fn	[x]	x)

Resembles runtime closures, except 
executed symbolically

Symbolic Closure Types



Approach

(let	[f	(fn	[x]	x)]	
		;	f	:				
		(f	1))

Γ@(fn	[x]	x)

Application rule?



Approach

(let	[f	(fn	[x]	x)]	
		;	f	:				
		(f	1))

Γ@(fn	[x]	x)



Tradeoffs

Undecidable in general

However, many local functions 
are only used once and are non-recursive

Can rely on top-level annotations to drive 
the symbolic execution



Symbolic 
Execution

ΩΩ
Typed 
Clojure

Automatic 
Annotations

Typed Racket 
(prior work)

Evaluation

Formalize+Sound

Design+ 
Implement

Evaluation
Formalize

Design+Implement
Prototype Prototype

Extensible 
Typing 
Rules



Naive formalism
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=>	[Int	:->	Int]
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Prototype Implementation

(tc	?	1)	
=>	Int

(tc	[Int	:->	Int]	(fn	[x]	x))	
=>	[Int	:->	Int]

(tc	?	(fn	[x]	x))	
=>	(Closure	{}	(fn	[x]	x))	



Prototype Implementation

(tc	?	1)	
=>	Int

(tc	[Int	:->	Int]	(fn	[x]	x))	
=>	[Int	:->	Int]

(tc	?	(fn	[x]	x))	
=>	(Closure	{}	(fn	[x]	x))	

(tc	?	((fn	[x]	x)	1))	
=>	Int



Prototype Implementation

(tc	?	1)	
=>	Int

(tc	[Int	:->	Int]	(fn	[x]	x))	
=>	[Int	:->	Int]

(tc	?	(fn	[x]	x))	
=>	(Closure	{}	(fn	[x]	x))	

(tc	?	((fn	[x]	x)	1))	
=>	Int



Prototype Implementation

(tc	?	1)	
=>	Int

(tc	[Int	:->	Int]	(fn	[x]	x))	
=>	[Int	:->	Int]

(tc	?	(fn	[x]	x))	
=>	(Closure	{}	(fn	[x]	x))	

(tc	?	((fn	[x]	x)	1))	
=>	Int
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(tc	?	(map	(fn	[x]	x)	[1	2	3]))	
=>	(Seq	Int)
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Prototype Implementation

(tc	?	(map	(fn	[x]	x)	[1	2	3]))	
=>	(Seq	Int)



Prototype Implementation

(tc	?	(map	(comp	(fn	[x]	x)	
																	(fn	[y]	y))	
											[1	2	3]))	

=>	(Seq	Int)

(tc	?	(map	(fn	[x]	x)	[1	2	3]))	
=>	(Seq	Int)



Prototype Implementation

(tc	?	(map	(comp	(fn	[x]	x)	
																	(fn	[y]	y))	
											[1	2	3]))	

=>	(Seq	Int)

(tc	?	(map	(fn	[x]	x)	[1	2	3]))	
=>	(Seq	Int)



Prototype Implementation

(tc	?	(map	(comp	(fn	[x]	x)	
																	(fn	[y]	y))	
											[1	2	3]))	

=>	(Seq	Int)

(tc	?	(map	(fn	[x]	x)	[1	2	3]))	
=>	(Seq	Int)



Prototype Implementation

(tc	?	(map	(comp	(fn	[x]	x)	
																	(fn	[y]	y))	
											[1	2	3]))	

=>	(Seq	Int)

(tc	?	(map	(fn	[x]	x)	[1	2	3]))	
=>	(Seq	Int)



Prototype Implementation

is an untypable[1] strongly normalizing term of System F

[1] LICS’88, Giannini & Rocca



Prototype Implementation

is an untypable[1] strongly normalizing term of System F

Evaluating it in plain Clojure, it’s just quirky identity function

(GR	(fn	[_]	(fn	[_]	42)))						;=>	42	
(GR	(fn	[_]	(fn	[_]	“hello”)))	;=>	“hello”

[1] LICS’88, Giannini & Rocca



Prototype Implementation

is an untypable[1] strongly normalizing term of System F

Evaluating it in plain Clojure, it’s just quirky identity function

(GR	(fn	[_]	(fn	[_]	42)))						;=>	42	
(GR	(fn	[_]	(fn	[_]	“hello”)))	;=>	“hello”

Challenge: Type check this quirky identity function

(ann	id	(All	[a]	[a	->	a]))	
(defn	id	[x]	
		(GR	(fn	[_]	(fn	[_]	x))))

[1] LICS’88, Giannini & Rocca
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Symbolic closures let us treat GR as a black box 
until it is executed symbolically
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Symbolic closures let us treat GR as a black box 
until it is executed symbolically

(tc	(All	[a]	[a	->	a])	

				(fn	[x]	
						(GR	(fn	[_]	(fn	[_]	x)))))	

=>	(All	[a]	[a	->	a])
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until it is executed symbolically

(tc	(All	[a]	[a	->	a])	

				(fn	[x]	
						(GR	(fn	[_]	(fn	[_]	x)))))	

=>	(All	[a]	[a	->	a])

?? ?



Prototype Implementation

Symbolic closures let us treat GR as a black box 
until it is executed symbolically

(tc	(All	[a]	[a	->	a])	

				(fn	[x]	
						(GR	(fn	[_]	(fn	[_]	x)))))	

=>	(All	[a]	[a	->	a])
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Prototype Implementation

Symbolic closures let us treat GR as a black box 
until it is executed symbolically

(tc	(All	[a]	[a	->	a])	

				(fn	[x]	
						(GR	(fn	[_]	(fn	[_]	x)))))	

=>	(All	[a]	[a	->	a])

?? ?

Symbolic Closures make the most 
of top-level annotations



}

Scorecard

“Check more 
programs!”



}

Scorecard

Symbolic closure prototype: 
Checks more programs

“Check more 
programs!”



Conclusion



Typed Clojure is a  
sound and practical 

optional type system for Clojure



ΩΩ
Typed 

Clojure

Typed Clojure is a  
sound and practical 

optional type system for Clojure

Formalize+Sound

Typed Racket 
(prior work)

Design+ 
Implement

I present the design of Typed Clojure, 
formalize the core type system, and prove it sound



ΩΩ
Typed 

Clojure

Typed Clojure is a  
sound and practical 

optional type system for Clojure

Evaluation

Formalize+Sound

Typed Racket 
(prior work)

Design+ 
Implement

I empirically show Typed Clojure’s features 
correspond to real-world programs



ΩΩ
Typed 

Clojure
Automatic 

Annotations

Typed Clojure is a  
sound and practical 

optional type system for Clojure

Evaluation

Formalize+Sound

Typed Racket 
(prior work)

Design+ 
Implement

Evaluation
Formalize

Design+Implement

I present a tool to automatically generate annotations 
and use it to port real-world Clojure programs



Symbolic 
Execution

ΩΩ

Extensible 
Typing 
Rules

Typed 
Clojure

Automatic 
Annotations

Typed Clojure is a  
sound and practical 

optional type system for Clojure

Evaluation

Formalize+Sound

Typed Racket 
(prior work)

Design+ 
Implement

Evaluation
Formalize

Design+Implement
Prototype Prototype

I identify and prototype several extensions 
to improve errors and type check more programs



Thanks



Extra slides



Type soundness Proof

1. Extend calculus with Java-style throwable errors 
2. Make explicit assumptions about Java 
3. Add “stuck”, “wrong”, and “error” rules to semantics 
4. Shown: Well-typed programs reduce to correct values or errors 

•  By induction on the reduction derivation, then cases on final red. 
rule and final (non-subsump.) typing rule 

5. Corollary: Well-typed programs don’t “go wrong” 
6. Corollary: Well-typed programs don’t throw null-ptr 

exceptions


