
Typed Clojure
in

Theory and Practice

Ambrose Bonnaire-Sergeant

What is Clojure?
A programming language

running on the Java Virtual Machine

What is Clojure?

3% of JVM users’ primary language is Clojure

- [JVM Ecosystem Report 2018, snyk.io]

A programming language
running on the Java Virtual Machine

http://snyk.io

What is Clojure?

3% of JVM users’ primary language is Clojure

- [JVM Ecosystem Report 2018, snyk.io]

A programming language
running on the Java Virtual Machine

1.1% of JVM users have adopted Clojure

- [The State of Java in 2018, baeldung.com]

http://snyk.io
http://baeldung.com

General Purpose

[State of Clojure 2019 Survey]

[State of Clojure 2019 Survey, Weighted average: 0 = Not Important, 1 = Important, 2 = Very Important]

Survey: Why Clojure?

[State of Clojure 2019 Survey, Weighted average: 0 = Not Important, 1 = Important, 2 = Very Important]

Survey: Why Clojure?

} Values,
First-class functions

[State of Clojure 2019 Survey, Weighted average: 0 = Not Important, 1 = Important, 2 = Very Important]

Survey: Why Clojure?

}
}

Values,
First-class functions

Experimentation,
Rapid prototyping

[State of Clojure 2019 Survey, Weighted average: 0 = Not Important, 1 = Important, 2 = Very Important]

Survey: Why Clojure?

}
}

Values,
First-class functions

Experimentation,
Rapid prototyping

Leverage host

[State of Clojure 2019 Survey]

Frustrations with Clojure

#2

#4

#11

[State of Clojure 2019 Survey]

Frustrations with Clojure

#2

#4

#11

My take
Clojure programmers need help

specifying and verifying
their programs

Typed Clojure
Typed Clojure is an optional type system for Clojure

My Research

Good Response to Typed Clojure
2012 2013 2014 2015 2016 2017

My Research

How Typed Clojure works
My Research

(ann say-hello [Any -> String])
(defn say-hello [to]
 (str “Hello, ” to))

(say-hello “world!”)
;=> “Hello, world!” : String

1. Take an existing  
Clojure program

2. Add type  
annotations

3. Use the type checker 
to verify Clojure 

programs

My Research

How Typed Clojure works

(ann say-hello [Any -> String])
(defn say-hello [to]
 (str “Hello, ” to))

(say-hello “world!”)
;=> “Hello, world!” : String

1. Take an existing  
Clojure program

2. Add type  
annotations

3. Use the type checker 
to verify Clojure 

programs

My Research

How Typed Clojure works

(ann say-hello [Any -> String])
(defn say-hello [to]
 (str “Hello, ” to))

(say-hello “world!”)
;=> “Hello, world!” : String

1. Take an existing  
Clojure program

2. Add type  
annotations

3. Use the type checker 
to verify Clojure 

programs

My Research

How Typed Clojure works

(ann say-hello [Any -> String])
(defn say-hello [to]
 (str “Hello, ” to))

(say-hello “world!”)
;=> “Hello, world!” : String

1. Take an existing  
Clojure program

2. Add type  
annotations

3. Use the type checker 
to verify Clojure 

programs (statically)

My Research

How Typed Clojure works

(ann say-hello [Any -> String])
(defn say-hello [to]
 (str “Hello, ” to))

(say-hello “world!”)
;=> “Hello, world!” : String

1. Take an existing  
Clojure program

2. Add type  
annotations

3. Use the type checker 
to verify Clojure 

programs (statically)

My Research

How Typed Clojure works

My Thesis Statement:
Typed Clojure is a

sound and practical
optional type system for Clojure

My Thesis Statement:
Typed Clojure is a

sound and practical
optional type system for Clojure

Typed Racket
(prior work)

My starting point for
Typed Clojure

ΩΩ
Typed

Clojure

My Thesis Statement:
Typed Clojure is a

sound and practical
optional type system for Clojure

Formalize+Sound

Typed Racket
(prior work)

Design+
Implement

I created a new
sound type

system for Clojure

ΩΩ
Typed

Clojure

My Thesis Statement:
Typed Clojure is a

sound and practical
optional type system for Clojure

Evaluation

Formalize+Sound

Typed Racket
(prior work)

Design+
Implement

I show
Typed Clojure’s features

correspond to real
programs

ΩΩ
Typed

Clojure
Automatic

Annotations

My Thesis Statement:
Typed Clojure is a

sound and practical
optional type system for Clojure

Evaluation

Formalize+Sound

Typed Racket
(prior work)

Design+
Implement

Evaluation
Formalize

Design+Implement

“Annotation
burden!” - Users

I created a
semi-automated

workflow to port Clojure
programs

ΩΩ

Extensible
Typing
Rules

Typed
Clojure

Automatic
Annotations

My Thesis Statement:
Typed Clojure is a

sound and practical
optional type system for Clojure

Evaluation

Formalize+Sound

Typed Racket
(prior work)

Design+
Implement

Evaluation
Formalize

Design+Implement
Prototype

“Incomprehensible
errors!” - Users

I demonstrate how to
extend Typed Clojure to

support custom rules

Symbolic
Execution

ΩΩ

Extensible
Typing
Rules

Typed
Clojure

Automatic
Annotations

My Thesis Statement:
Typed Clojure is a

sound and practical
optional type system for Clojure

Evaluation

Formalize+Sound

Typed Racket
(prior work)

Design+
Implement

Evaluation
Formalize

Design+Implement
Prototype Prototype

“Check more
programs!” - Users

I show to how to mix
symbolic execution with type

checking

Part I
Design and Evaluation

of Typed Clojure

Symbolic
Execution

ΩΩ

Extensible
Typing
Rules

Typed
Clojure

Automatic
Annotations

Typed Racket
(prior work)

Evaluation

Formalize+Sound

Design+
Implement

Evaluation
Formalize

Design+Implement
Prototype Prototype

Published:
“Practical Optional Types for Clojure”, Ambrose Bonnaire-Sergeant, Rowan Davies, Sam
Tobin-Hochstadt; ESOP 2016

Symbolic
Execution

ΩΩ

Extensible
Typing
Rules

Typed
Clojure

Automatic
Annotations

Typed Racket
(prior work)

Evaluation

Formalize+Sound

Design+
Implement

Evaluation
Formalize

Design+Implement
Prototype Prototype

Check with Typed Clojure

Simple Functions

(defn	point	[x	y]	
		{:x	x,	:y	y})	

(:x	(point	1	2))	
;=>	1	
(:y	(point	1	2))	
;=>	2

Scorecard

Simple Functions

(defn	point	[x	y]	
		{:x	x,	:y	y})	

(:x	(point	1	2))	
;=>	1	
(:y	(point	1	2))	
;=>	2

(defalias	Point	
		'{:x	Int	:y	Int})

(ann	point	[Int	Int	->	Point])

Scorecard

Simple Functions

(defn	point	[x	y]	
		{:x	x,	:y	y})	

(:x	(point	1	2))	
;=>	1	
(:y	(point	1	2))	
;=>	2

(defalias	Point	
		'{:x	Int	:y	Int})

(ann	point	[Int	Int	->	Point])

Scorecard

(defn	combine	[p	f]	
		(f	(:x	p)	(:y	p)))	

(combine	(point	1	2)	+)	
;=>	3	
(combine	(point	1	2)	str)	
;=>	"12"

Higher-order functions
Scorecard

(ann	combine	
		(All	[a]	
				[Point	[Int	Int	->	a]	->	a]))
(defn	combine	[p	f]	
		(f	(:x	p)	(:y	p)))	

(combine	(point	1	2)	+)	
;=>	3	
(combine	(point	1	2)	str)	
;=>	"12"

Higher-order functions
Scorecard

(ann	combine	
		(All	[a]	
				[Point	[Int	Int	->	a]	->	a]))
(defn	combine	[p	f]	
		(f	(:x	p)	(:y	p)))	

(combine	(point	1	2)	+)	
;=>	3	
(combine	(point	1	2)	str)	
;=>	"12"

Higher-order functions
Scorecard

Type-Based Control flow

(defn	to-int	[m]	
		(if	(string?	m)	
				(Integer/parseInt	m)	
				m))	

(to-int	1)	
;=>	1	
(to-int	"2")	
;=>	2

Scorecard

Type-Based Control flow

(defn	to-int	[m]	
		(if	(string?	m)	
				(Integer/parseInt	m)	
				m))	

(to-int	1)	
;=>	1	
(to-int	"2")	
;=>	2

(ann	to-int		
		[(U	Int	Str)	->	Int])	

Scorecard

Type-Based Control flow

(defn	to-int	[m]	
		(if	(string?	m)	
				(Integer/parseInt	m)	
				m))	

(to-int	1)	
;=>	1	
(to-int	"2")	
;=>	2

(ann	to-int		
		[(U	Int	Str)	->	Int])	

Scorecard

Str

Int

Type-Based Control flow

(defn	to-int	[m]	
		(if	(string?	m)	
				(Integer/parseInt	m)	
				m))	

(to-int	1)	
;=>	1	
(to-int	"2")	
;=>	2

(ann	to-int		
		[(U	Int	Str)	->	Int])	

Scorecard

Str

Int

(defmulti	to-int-mm	class)	
(defmethod	to-int-mm	String	[m]	
		(Integer/parseInt	m))	
(defmethod	to-int-mm	Number	[m]	m)	

(to-int-mm	1)			;=>	1	
(to-int-mm	"2")	;=>	2

Multimethods
Scorecard

(defmulti	to-int-mm	class)	
(defmethod	to-int-mm	String	[m]	
		(Integer/parseInt	m))	
(defmethod	to-int-mm	Number	[m]	m)	

(to-int-mm	1)			;=>	1	
(to-int-mm	"2")	;=>	2

Multimethods
Scorecard

(defmulti	to-int-mm	class)	
(defmethod	to-int-mm	String	[m]	
		(Integer/parseInt	m))	
(defmethod	to-int-mm	Number	[m]	m)	

(to-int-mm	1)			;=>	1	
(to-int-mm	"2")	;=>	2

Multimethods
Scorecard

(defmulti	to-int-mm	class)	
(defmethod	to-int-mm	String	[m]	
		(Integer/parseInt	m))	
(defmethod	to-int-mm	Number	[m]	m)	

(to-int-mm	1)			;=>	1	
(to-int-mm	"2")	;=>	2

Multimethods
Scorecard

(defmulti	to-int-mm	class)	
(defmethod	to-int-mm	String	[m]	
		(Integer/parseInt	m))	
(defmethod	to-int-mm	Number	[m]	m)	

(to-int-mm	1)			;=>	1	
(to-int-mm	"2")	;=>	2

Multimethods
Scorecard

(ann	to-int-mm	
		[(U	Int	Str)	->	Int])

(defmulti	to-int-mm	class)	
(defmethod	to-int-mm	String	[m]	
		(Integer/parseInt	m))	
(defmethod	to-int-mm	Number	[m]	m)	

(to-int-mm	1)			;=>	1	
(to-int-mm	"2")	;=>	2

Multimethods
Scorecard

(ann	to-int-mm	
		[(U	Int	Str)	->	Int])

Str

Int

(defmulti	to-int-mm	class)	
(defmethod	to-int-mm	String	[m]	
		(Integer/parseInt	m))	
(defmethod	to-int-mm	Number	[m]	m)	

(to-int-mm	1)			;=>	1	
(to-int-mm	"2")	;=>	2

Multimethods
Scorecard

(ann	to-int-mm	
		[(U	Int	Str)	->	Int])

Str

Int

Symbolic
Execution

ΩΩ

Extensible
Typing
Rules

Typed
Clojure

Automatic
Annotations

Typed Racket
(prior work)

Evaluation

Formalize+Sound

Design+
Implement

Evaluation
Formalize

Design+Implement
Prototype Prototype

Formalism

1. Based on Occurrence Typing[1] (big-step semantics)
2. Add Typed Clojure features: HMaps, Multimethods
3. Add (some) Java Interop: Classes, Methods, Fields…

[1] ICFP ’10 - Tobin-Hochstadt, Felleisen

Type soundness

Well-typed programs
don’t throw null-pointer exceptions

Well-typed programs don’t “go wrong”Theorem

Corollary

Symbolic
Execution

ΩΩ

Extensible
Typing
Rules

Typed
Clojure

Automatic
Annotations

Typed Racket
(prior work)

Evaluation

Formalize+Sound

Design+
Implement

Evaluation
Formalize

Design+Implement
Prototype Prototype

Empirical Evaluation of Typed Clojure

19k lines of Typed Clojure

(let	[f	(fn	[x	:-	Int]	x)]	
		(f	1))

(map	(fn	[p	:-	Point]	
								(+	(:x	p)	
											(:y	p)))	
					[(point	1	2)	(point	3	4)])	

Not Enough FP Support
Scorecard

(let	[f	(fn	[x	:-	Int]	x)]	
		(f	1))

(map	(fn	[p	:-	Point]	
								(+	(:x	p)	
											(:y	p)))	
					[(point	1	2)	(point	3	4)])	

Not Enough FP Support
Required!

Scorecard

Required!

(let	[f	(fn	[x	:-	Int]	x)]	
		(f	1))

(map	(fn	[p	:-	Point]	
								(+	(:x	p)	
											(:y	p)))	
					[(point	1	2)	(point	3	4)])	

Not Enough FP Support
Required!

Scorecard

Required!

Global Annotation Burden
Scorecard

Global Annotation Burden

(ann	combine	
		(All	[a]	
				[Point	[Int	Int	->	a]	->	a]))

(defalias	Point	
		'{:x	Int	:y	Int})

(ann	point	[Int	Int	->	Point])

(ann	extract-int		
		['{:value	(U	Int	Str)}	->	Int])

(ann	extract-int-mm		
		['{:value	(U	Int	Str)}	->	Int])

Burden!

Scorecard

Global Annotation Burden

(ann	combine	
		(All	[a]	
				[Point	[Int	Int	->	a]	->	a]))

(defalias	Point	
		'{:x	Int	:y	Int})

(ann	point	[Int	Int	->	Point])

(ann	extract-int		
		['{:value	(U	Int	Str)}	->	Int])

(ann	extract-int-mm		
		['{:value	(U	Int	Str)}	->	Int])

Burden!

Scorecard

Poor Errors with Macros
Scorecard

(inc	nil)

Poor Errors with Macros
Scorecard

(inc	nil)

Poor Errors with Macros

Type	Error:	
Static	method	clojure.lang.Numbers/inc	does	not	accept	nil

Scorecard

(inc	nil)

Poor Errors with Macros

Type	Error:	
Static	method	clojure.lang.Numbers/inc	does	not	accept	nil

Who??

Scorecard

(inc	nil)

Poor Errors with Macros
;	Expands	to	(Numbers/inc	nil)

Type	Error:	
Static	method	clojure.lang.Numbers/inc	does	not	accept	nil

Who??

Scorecard

(inc	nil)

Poor Errors with Macros
;	Expands	to	(Numbers/inc	nil)

Type	Error:	
Static	method	clojure.lang.Numbers/inc	does	not	accept	nil

Who??

(for	[a	[1	2	3]]	
		(inc	a))

Scorecard

(inc	nil)

Poor Errors with Macros
;	Expands	to	(Numbers/inc	nil)

Type	Error:	
Static	method	clojure.lang.Numbers/inc	does	not	accept	nil

Who??

(for	[a	[1	2	3]]	
		(inc	a))
Type	Error:	
Static	method	clojure.lang.Numbers/inc	does	not	accept	Any

Scorecard

(inc	nil)

Poor Errors with Macros
;	Expands	to	(Numbers/inc	nil)

Type	Error:	
Static	method	clojure.lang.Numbers/inc	does	not	accept	nil

Who??

(for	[a	[1	2	3]]	
		(inc	a))
Type	Error:	
Static	method	clojure.lang.Numbers/inc	does	not	accept	Any

Huh? But it’s an Int…

Scorecard

(inc	nil)

Poor Errors with Macros
;	Expands	to	(Numbers/inc	nil)

Type	Error:	
Static	method	clojure.lang.Numbers/inc	does	not	accept	nil

Who??

(for	[a	[1	2	3]]	
		(inc	a))
Type	Error:	
Static	method	clojure.lang.Numbers/inc	does	not	accept	Any

Huh? But it’s an Int…

(t/for	[a	:-	t/Int,	[1	2	3]]	
		(inc	a))

Scorecard

(inc	nil)

Poor Errors with Macros
;	Expands	to	(Numbers/inc	nil)

Type	Error:	
Static	method	clojure.lang.Numbers/inc	does	not	accept	nil

Who??

(for	[a	[1	2	3]]	
		(inc	a))
Type	Error:	
Static	method	clojure.lang.Numbers/inc	does	not	accept	Any

Huh? But it’s an Int…

(t/for	[a	:-	t/Int,	[1	2	3]]	
		(inc	a))

Scorecard

How was I supposed to know about t/for?

(inc	nil)

Poor Errors with Macros
;	Expands	to	(Numbers/inc	nil)

Type	Error:	
Static	method	clojure.lang.Numbers/inc	does	not	accept	nil

Who??

(for	[a	[1	2	3]]	
		(inc	a))
Type	Error:	
Static	method	clojure.lang.Numbers/inc	does	not	accept	Any

Huh? But it’s an Int…

(t/for	[a	:-	t/Int,	[1	2	3]]	
		(inc	a))

Scorecard

How was I supposed to know about t/for?

Scorecard: Typed Clojure’s initial design

Scorecard: Typed Clojure’s initial design

Scorecard: Typed Clojure’s initial design

}

Scorecard: Typed Clojure’s initial design

}
ΩΩ

Typed
Clojure

Typed
Racket

(prior work)

Scorecard: Typed Clojure’s initial design

}
ΩΩ

Typed
Clojure

Automatic
Annotations

Typed
Racket

(prior work)

“Annotation
burden!”

Scorecard: Typed Clojure’s initial design

}
ΩΩ

Extensible
Typing
Rules

Typed
Clojure

Automatic
Annotations

Typed
Racket

(prior work)

“Annotation
burden!”

“Incomprehensible
errors!”

Scorecard: Typed Clojure’s initial design

}
Symbolic
Execution

ΩΩ

Extensible
Typing
Rules

Typed
Clojure

Automatic
Annotations

Typed
Racket

(prior work)

“Annotation
burden!”

“Incomprehensible
errors!”

“Check more
programs!”

Part II
Automatic Annotations

Symbolic
Execution

ΩΩ

Extensible
Typing
Rules

Typed
Clojure

Automatic
Annotations

Typed Racket
(prior work)

Evaluation

Formalize+Sound

Design+
Implement

Evaluation
Formalize

Design+Implement
Prototype Prototype

In submission:
“Squash the work: A Workflow for Typing Untyped Programs that use Ad-Hoc Data Structures”,
Ambrose Bonnaire-Sergeant, Sam Tobin-Hochstadt

“Annotation
burden!”

Annotation burden
(ann	combine	
		(All	[a]	
				[Point	[Int	Int	->	a]	->	a]))

(defalias	Point	
		'{:x	Int	:y	Int})

(ann	point	[Int	Int	->	Point])

(ann	extract-int		
		['{:value	(U	Int	Str)}	->	Int])

(ann	extract-int-mm		
		['{:value	(U	Int	Str)}	->	Int])

Annotation burden

Goal: Automatically generate

(ann	combine	
		(All	[a]	
				[Point	[Int	Int	->	a]	->	a]))

(defalias	Point	
		'{:x	Int	:y	Int})

(ann	point	[Int	Int	->	Point])

(ann	extract-int		
		['{:value	(U	Int	Str)}	->	Int])

(ann	extract-int-mm		
		['{:value	(U	Int	Str)}	->	Int])

Symbolic
Execution

ΩΩ

Extensible
Typing
Rules

Typed
Clojure

Automatic
Annotations

Typed Racket
(prior work)

Evaluation

Formalize+Sound

Design+
Implement

Evaluation
Formalize

Design+Implement
Prototype Prototype

Tool design

Γ = {forty-two : Long}

Tool design

Γ = {forty-two : Long}
Instrument

Collection Phase

Tool design

Γ = {forty-two : Long}
Instrument

Collection Phase

Track
Collection Phase

Tool design

Γ = {forty-two : Long}
Instrument

Collection Phase

Track

Naive Translation

Collection Phase

Inference Phase
Γ0

Tool design

Γ = {forty-two : Long}
Instrument

Collection Phase

Track

Naive Translation

Collection Phase

Inference Phase

Local “Squashing”
Inference Phase

Γ0

Γ1

Tool design

Γ = {forty-two : Long}
Instrument

Collection Phase

Track

Naive Translation

Collection Phase

Inference Phase

Local “Squashing”
Inference Phase

Global
“Squashing”

Inference Phase

Γ0

Γ1

Tool design

Porting workflow

Auto-generate
annotations

…

Porting workflow

Auto-generate
annotations

Type check with
Typed Clojure

…

Porting workflow

Auto-generate
annotations

Type check with
Typed Clojure

Manually fix
according to

error message

…

*
Type error?

Porting workflow

Auto-generate
annotations

Type check with
Typed Clojure

Manually fix
according to

error message

…

*
Type error?

*

Porting workflow

Auto-generate
annotations

Type check with
Typed Clojure

Manually fix
according to

error message

…

*

Done

Type error?

*Type checks?

Symbolic
Execution

ΩΩ

Extensible
Typing
Rules

Typed
Clojure

Automatic
Annotations

Typed Racket
(prior work)

Evaluation

Formalize+Sound

Design+
Implement

Evaluation
Formalize

Design+Implement
Prototype Prototype

“Track and annotate x’s in program e”

Definition

Test

Definition

Test

Definition

Test

Definition

Test

Test

Definition

Test Track-me

Test

Definition

Derived typeTest Track-me

Intentionally unsound

Aggressively combines
types to create compact aliases

and recursive types

Tailored for the workflow

Symbolic
Execution

ΩΩ

Extensible
Typing
Rules

Typed
Clojure

Automatic
Annotations

Typed Racket
(prior work)

Evaluation

Formalize+Sound

Design+
Implement

Evaluation
Formalize

Design+Implement
Prototype Prototype

Evaluation
Ported 5 open-source
programs (~1500 LOC)

Measured the kinds of
manual changes needed

(ann	mult	[Int	Int	:->	Int])

Auto-generated
types

(ann	mult	[Int	*	:->	Int])

(ann	mult	[Int	Int	:->	Int])

Auto-generated
types

Manual
changes

(ann	mult	[Int	*	:->	Int])

(ann	mult	[Int	Int	:->	Int])

Auto-generated
types

Manual
changes

(ann	initial-perm-numbers	[(Map	Int	Int)	:->	(Coll	Int)])

Auto-generated
types

(ann	mult	[Int	*	:->	Int])

(ann	mult	[Int	Int	:->	Int])

Auto-generated
types

Manual
changes

(ann	initial-perm-numbers	[(Map	Int	Int)	:->	(Coll	Int)])

Auto-generated
types

(ann	initial-perm-numbers	[(Map	Any	Int)	:->	(Coll	Int)])

Manual
changes

(defn	parse-exp	[e]	
		(cond	
				(symbol?	e)	{:E	:var,	:name	e}	
				(false?	e)		{:E	:false}	
				(=	'n?	e)			{:E	:n?}	
					
			))

Has an
interesting

type

(defalias	E	
		(U	

				'{:E	':app,	:args	(Vec	E),	:fun	E}	
				'{:E	':false}	
				'{:E	':if,	:else	E,	:test	E,	:then	E}	
				'{:E	':lambda,	:arg	Sym,	:arg-type	T,	:body	E}	
				'{:E	':var,	:name	Sym}))

(ann	parse-exp	[Any	:->	E])
(defn	parse-exp	[e]	
		(cond	
				(symbol?	e)	{:E	:var,	:name	e}	
				(false?	e)		{:E	:false}	
				(=	'n?	e)			{:E	:n?}	
					
			))

Has an
interesting

type

Auto-generated
types

(defalias	E	
		(U	

				'{:E	':app,	:args	(Vec	E),	:fun	E}	
				'{:E	':false}	
				'{:E	':if,	:else	E,	:test	E,	:then	E}	
				'{:E	':lambda,	:arg	Sym,	:arg-type	T,	:body	E}	
				'{:E	':var,	:name	Sym}))

(ann	parse-exp	[Any	:->	E])

				'{:E	':add1}	
				'{:E	':n?}

(defn	parse-exp	[e]	
		(cond	
				(symbol?	e)	{:E	:var,	:name	e}	
				(false?	e)		{:E	:false}	
				(=	'n?	e)			{:E	:n?}	
					
			))

Has an
interesting

type

Auto-generated
types

Manual
changes

Manual effort

Mostly deleting/upcasting types

Adding missing cases to
(generated) recursive types

}

Scorecard

“Annotation
burden!”

}

Scorecard

Automatic annotations makes
porting Clojure programs easier

“Annotation
burden!”

Part III
Extensible Typing Rules

Symbolic
Execution

ΩΩ
Typed
Clojure

Automatic
Annotations

Typed Racket
(prior work)

Evaluation

Formalize+Sound

Design+
Implement

Evaluation
Formalize

Design+Implement
Prototype Prototype

Extensible
Typing
Rules

“Incomprehensible
errors!”

Problem

(for	[a	[1	2	3]]	
		(inc	a))

Problem

(for	[a	[1	2	3]]	
		(inc	a))
Type	Error:	
Static	method	clojure.lang.Numbers/inc	does	not	accept	Any

Problem

(for	[a	[1	2	3]]	
		(inc	a))
Type	Error:	
Static	method	clojure.lang.Numbers/inc	does	not	accept	Any

How to propagate type information?

Idea

(for	[a	[1	2	3]]	
		(inc	a))

Idea

(for	[a	[1	2	3]]	
		(inc	a))

Allow the user to define custom
typing rules for macros

Roadblock:
Expansion comes before check

Fully expand

Type check

Run

…

Roadblock:
Expansion comes before check

Fully expand

Type check

Run

…

Roadblock:
Expansion comes before check

Fully expand

Type check

Run

…

Already
expanded!

Solution

Allow Typed Clojure to
interleave macroexpansion

and type checking

Symbolic
Execution

ΩΩ
Typed
Clojure

Automatic
Annotations

Typed Racket
(prior work)

Evaluation

Formalize+Sound

Design+
Implement

Evaluation
Formalize

Design+Implement
Prototype Prototype

Extensible
Typing
Rules

Expand
Type
check

Run

…
*

*

Checker controls expansion

Expand as needed

I wrote a new
Clojure code analyzer

This was non-trivial

Must also interleave evaluation

Maintains correct lexical scope

Interacts with Clojure’s type hinting system

Example type checker
with new analyzer

If partially
expanded…

Example type checker
with new analyzer

{Custom rules

If partially
expanded…

Example type checker
with new analyzer

}

Scorecard

“Incomprehensible
errors!”

}

Scorecard

Extensible rules Prototype:
Improve errors, check more programs

“Incomprehensible
errors!”

Part VI
Symbolic Execution

Symbolic
Execution

ΩΩ
Typed
Clojure

Automatic
Annotations

Typed Racket
(prior work)

Evaluation

Formalize+Sound

Design+
Implement

Evaluation
Formalize

Design+Implement
Prototype Prototype

Extensible
Typing
Rules

“Check more
programs!”

Goal: Reduce local annotations

(map	(fn	[p	:-	Point]	
								(+	(:x	p)	
											(:y	p)))	
					[(point	1	2)	(point	3	4)])	

(let	[f	(fn	[x	:-	Int]	x)]	
		(f	1))

Goal: Reduce local annotations

(map	(fn	[p	:-	Point]	
								(+	(:x	p)	
											(:y	p)))	
					[(point	1	2)	(point	3	4)])	

(let	[f	(fn	[x	:-	Int]	x)]	
		(f	1))

Goal: Reduce local annotations

(map	(fn	[p	:-	Point]	
								(+	(:x	p)	
											(:y	p)))	
					[(point	1	2)	(point	3	4)])	

(let	[f	(fn	[x	:-	Int]	x)]	
		(f	1))

Setting: Bidirectional Checking

(map	(fn	[p	:-	?????]	
								(+	(:x	p)	
											(:y	p)))	
					[(point	1	2)	(point	3	4)])	

(let	[f	(fn	[x	:-	???]	x)]	
		(f	1))

Setting: Bidirectional Checking

(map	(fn	[p	:-	?????]	
								(+	(:x	p)	
											(:y	p)))	
					[(point	1	2)	(point	3	4)])	

(let	[f	(fn	[x	:-	???]	x)]	
		(f	1))

Type checking proceeds outside-in

Setting: Bidirectional Checking

(map	(fn	[p	:-	?????]	
								(+	(:x	p)	
											(:y	p)))	
					[(point	1	2)	(point	3	4)])	

(let	[f	(fn	[x	:-	???]	x)]	
		(f	1))

Type checking proceeds outside-in

Must have type of x here

Setting: Bidirectional Checking

(map	(fn	[p	:-	?????]	
								(+	(:x	p)	
											(:y	p)))	
					[(point	1	2)	(point	3	4)])	

(let	[f	(fn	[x	:-	???]	x)]	
		(f	1))

Type checking proceeds outside-in

Must have type of x here

Must have type of p here

Intuition

(let	[f	(fn	[x	:-	???]	x)]	
		(f	1))

(map	(fn	[p	:-	?????]	
								(+	(:x	p)	
											(:y	p)))	
					[(point	1	2)	(point	3	4)])	

Intuition

(let	[f	(fn	[x	:-	???]	x)]	
		(f	1))

(map	(fn	[p	:-	?????]	
								(+	(:x	p)	
											(:y	p)))	
					[(point	1	2)	(point	3	4)])	

Intuition

(let	[f	(fn	[x	:-	???]	x)]	
		(f	1))

(map	(fn	[p	:-	?????]	
								(+	(:x	p)	
											(:y	p)))	
					[(point	1	2)	(point	3	4)])	

Intuition

(let	[f	(fn	[x	:-	???]	x)]	
		(f	1))

(map	(fn	[p	:-	?????]	
								(+	(:x	p)	
											(:y	p)))	
					[(point	1	2)	(point	3	4)])	

Approach

(let	[f	(fn	[x]	x)]	
		;	f	:				
		(f	1))

New type rule for checking (unannotated) functions:

????????

Approach

(let	[f	(fn	[x]	x)]	
		;	f	:				
		(f	1))

New type rule for checking (unannotated) functions:

The type of a function is its code

(fn	[x]	x)

Approach

(let	[f	(fn	[x]	x)]	
		;	f	:				
		(f	1))

New type rule for checking (unannotated) functions:

The type of a function is its code
…and the type environment it was “defined” at

Γ@(fn	[x]	x)

Approach

(let	[f	(fn	[x]	x)]	
		;	f	:				
		(f	1))

New type rule for checking (unannotated) functions:

Γ@(fn	[x]	x)

Resembles runtime closures, except
executed symbolically

Symbolic Closure Types

Approach

(let	[f	(fn	[x]	x)]	
		;	f	:				
		(f	1))

Γ@(fn	[x]	x)

Application rule?

Approach

(let	[f	(fn	[x]	x)]	
		;	f	:				
		(f	1))

Γ@(fn	[x]	x)

Tradeoffs

Undecidable in general

However, many local functions
are only used once and are non-recursive

Can rely on top-level annotations to drive
the symbolic execution

Symbolic
Execution

ΩΩ
Typed
Clojure

Automatic
Annotations

Typed Racket
(prior work)

Evaluation

Formalize+Sound

Design+
Implement

Evaluation
Formalize

Design+Implement
Prototype Prototype

Extensible
Typing
Rules

Naive formalism

Naive formalism

Naive formalism

Naive formalism

Naive formalism

Naive formalism

Prototype Implementation

Prototype Implementation

(tc	?	1)	
=>	Int

Prototype Implementation

(tc	?	1)	
=>	Int

(tc	[Int	:->	Int]	(fn	[x]	x))	
=>	[Int	:->	Int]

Prototype Implementation

(tc	?	1)	
=>	Int

(tc	[Int	:->	Int]	(fn	[x]	x))	
=>	[Int	:->	Int]

Prototype Implementation

(tc	?	1)	
=>	Int

(tc	[Int	:->	Int]	(fn	[x]	x))	
=>	[Int	:->	Int]

Prototype Implementation

(tc	?	1)	
=>	Int

(tc	[Int	:->	Int]	(fn	[x]	x))	
=>	[Int	:->	Int]

(tc	?	(fn	[x]	x))	
=>	(Closure	{}	(fn	[x]	x))	

Prototype Implementation

(tc	?	1)	
=>	Int

(tc	[Int	:->	Int]	(fn	[x]	x))	
=>	[Int	:->	Int]

(tc	?	(fn	[x]	x))	
=>	(Closure	{}	(fn	[x]	x))	

(tc	?	((fn	[x]	x)	1))	
=>	Int

Prototype Implementation

(tc	?	1)	
=>	Int

(tc	[Int	:->	Int]	(fn	[x]	x))	
=>	[Int	:->	Int]

(tc	?	(fn	[x]	x))	
=>	(Closure	{}	(fn	[x]	x))	

(tc	?	((fn	[x]	x)	1))	
=>	Int

Prototype Implementation

(tc	?	1)	
=>	Int

(tc	[Int	:->	Int]	(fn	[x]	x))	
=>	[Int	:->	Int]

(tc	?	(fn	[x]	x))	
=>	(Closure	{}	(fn	[x]	x))	

(tc	?	((fn	[x]	x)	1))	
=>	Int

Prototype Implementation

(tc	?	(map	(fn	[x]	x)	[1	2	3]))	
=>	(Seq	Int)

Prototype Implementation

(tc	?	(map	(fn	[x]	x)	[1	2	3]))	
=>	(Seq	Int)

Prototype Implementation

(tc	?	(map	(fn	[x]	x)	[1	2	3]))	
=>	(Seq	Int)

Prototype Implementation

(tc	?	(map	(comp	(fn	[x]	x)	
																	(fn	[y]	y))	
											[1	2	3]))	

=>	(Seq	Int)

(tc	?	(map	(fn	[x]	x)	[1	2	3]))	
=>	(Seq	Int)

Prototype Implementation

(tc	?	(map	(comp	(fn	[x]	x)	
																	(fn	[y]	y))	
											[1	2	3]))	

=>	(Seq	Int)

(tc	?	(map	(fn	[x]	x)	[1	2	3]))	
=>	(Seq	Int)

Prototype Implementation

(tc	?	(map	(comp	(fn	[x]	x)	
																	(fn	[y]	y))	
											[1	2	3]))	

=>	(Seq	Int)

(tc	?	(map	(fn	[x]	x)	[1	2	3]))	
=>	(Seq	Int)

Prototype Implementation

(tc	?	(map	(comp	(fn	[x]	x)	
																	(fn	[y]	y))	
											[1	2	3]))	

=>	(Seq	Int)

(tc	?	(map	(fn	[x]	x)	[1	2	3]))	
=>	(Seq	Int)

Prototype Implementation

is an untypable[1] strongly normalizing term of System F

[1] LICS’88, Giannini & Rocca

Prototype Implementation

is an untypable[1] strongly normalizing term of System F

Evaluating it in plain Clojure, it’s just quirky identity function

(GR	(fn	[_]	(fn	[_]	42)))						;=>	42	
(GR	(fn	[_]	(fn	[_]	“hello”)))	;=>	“hello”

[1] LICS’88, Giannini & Rocca

Prototype Implementation

is an untypable[1] strongly normalizing term of System F

Evaluating it in plain Clojure, it’s just quirky identity function

(GR	(fn	[_]	(fn	[_]	42)))						;=>	42	
(GR	(fn	[_]	(fn	[_]	“hello”)))	;=>	“hello”

Challenge: Type check this quirky identity function

(ann	id	(All	[a]	[a	->	a]))	
(defn	id	[x]	
		(GR	(fn	[_]	(fn	[_]	x))))

[1] LICS’88, Giannini & Rocca

Prototype Implementation

Symbolic closures let us treat GR as a black box
until it is executed symbolically

Prototype Implementation

Symbolic closures let us treat GR as a black box
until it is executed symbolically

Prototype Implementation

Symbolic closures let us treat GR as a black box
until it is executed symbolically

(tc	(All	[a]	[a	->	a])	

				(fn	[x]	
						(GR	(fn	[_]	(fn	[_]	x)))))	

=>	(All	[a]	[a	->	a])

Prototype Implementation

Symbolic closures let us treat GR as a black box
until it is executed symbolically

(tc	(All	[a]	[a	->	a])	

				(fn	[x]	
						(GR	(fn	[_]	(fn	[_]	x)))))	

=>	(All	[a]	[a	->	a])

Prototype Implementation

Symbolic closures let us treat GR as a black box
until it is executed symbolically

(tc	(All	[a]	[a	->	a])	

				(fn	[x]	
						(GR	(fn	[_]	(fn	[_]	x)))))	

=>	(All	[a]	[a	->	a])
?

Prototype Implementation

Symbolic closures let us treat GR as a black box
until it is executed symbolically

(tc	(All	[a]	[a	->	a])	

				(fn	[x]	
						(GR	(fn	[_]	(fn	[_]	x)))))	

=>	(All	[a]	[a	->	a])
? ?

Prototype Implementation

Symbolic closures let us treat GR as a black box
until it is executed symbolically

(tc	(All	[a]	[a	->	a])	

				(fn	[x]	
						(GR	(fn	[_]	(fn	[_]	x)))))	

=>	(All	[a]	[a	->	a])

?? ?

Prototype Implementation

Symbolic closures let us treat GR as a black box
until it is executed symbolically

(tc	(All	[a]	[a	->	a])	

				(fn	[x]	
						(GR	(fn	[_]	(fn	[_]	x)))))	

=>	(All	[a]	[a	->	a])

?? ?

Prototype Implementation

Symbolic closures let us treat GR as a black box
until it is executed symbolically

(tc	(All	[a]	[a	->	a])	

				(fn	[x]	
						(GR	(fn	[_]	(fn	[_]	x)))))	

=>	(All	[a]	[a	->	a])

?? ?

Symbolic Closures make the most
of top-level annotations

}

Scorecard

“Check more
programs!”

}

Scorecard

Symbolic closure prototype:
Checks more programs

“Check more
programs!”

Conclusion

Typed Clojure is a
sound and practical

optional type system for Clojure

ΩΩ
Typed

Clojure

Typed Clojure is a
sound and practical

optional type system for Clojure

Formalize+Sound

Typed Racket
(prior work)

Design+
Implement

I present the design of Typed Clojure,
formalize the core type system, and prove it sound

ΩΩ
Typed

Clojure

Typed Clojure is a
sound and practical

optional type system for Clojure

Evaluation

Formalize+Sound

Typed Racket
(prior work)

Design+
Implement

I empirically show Typed Clojure’s features
correspond to real-world programs

ΩΩ
Typed

Clojure
Automatic

Annotations

Typed Clojure is a
sound and practical

optional type system for Clojure

Evaluation

Formalize+Sound

Typed Racket
(prior work)

Design+
Implement

Evaluation
Formalize

Design+Implement

I present a tool to automatically generate annotations
and use it to port real-world Clojure programs

Symbolic
Execution

ΩΩ

Extensible
Typing
Rules

Typed
Clojure

Automatic
Annotations

Typed Clojure is a
sound and practical

optional type system for Clojure

Evaluation

Formalize+Sound

Typed Racket
(prior work)

Design+
Implement

Evaluation
Formalize

Design+Implement
Prototype Prototype

I identify and prototype several extensions
to improve errors and type check more programs

Thanks

Extra slides

Type soundness Proof

1. Extend calculus with Java-style throwable errors
2. Make explicit assumptions about Java
3. Add “stuck”, “wrong”, and “error” rules to semantics
4. Shown: Well-typed programs reduce to correct values or errors

• By induction on the reduction derivation, then cases on final red.
rule and final (non-subsump.) typing rule

5. Corollary: Well-typed programs don’t “go wrong”
6. Corollary: Well-typed programs don’t throw null-ptr

exceptions

