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Hi, my name is Ambrose Bonnaire-Sergeant, and welcome to my talk. Today I will be defending my thesis, which is titled “Typed Clojure in Theory and Practice”



What is Clojure?

3% of JVM users’ primary language is Clojure

- [JVM Ecosystem Report 2018, snyk.io]

A programming language 
running on the Java Virtual Machine

1.1% of JVM users have adopted Clojure

- [The State of Java in 2018, baeldung.com]

So, what is Clojure? Clojure is a programming language running on the Java Virtual Machine, so it runs wherever Java does. According to recent JVM surveys, Clojure 
has around 3%-1% market share of JVM users, so it’s probably in the top 5 most popular languages on the JVM.

http://snyk.io
http://baeldung.com


General Purpose

[State of Clojure 2019 Survey]

Clojure is designed to be a general purpose programming language, and is used in a wide variety of areas. A survey of around 2500 Clojure programmers earlier this year 
showed Clojure is mostly used to build Web applications, open source projects, and provide commercial services.



[State of Clojure 2019 Survey, Weighted average: 0 = Not Important, 1 = Important, 2 = Very Important]

Survey: Why Clojure?

}
}

Values, 
First-class functions

Experimentation, 
Rapid prototyping

Leverage host

What makes Clojure worth choosing over other languages? The same survey asked this question, and had participants rate their favourite Clojure features from 0 (not 
important) to 2 (very important). The top-5 features are in three main groups. First, functional programming and immutability emphasise programming with values and 
first-class functions. Second, it is easy to experiment and prototype in Clojure using the REPL and other features. Third, Clojure can leverage all the JVM ecosystem with 
host interoperability.



[State of Clojure 2019 Survey]

Frustrations with Clojure

#2

#4

#11

My take 
Clojure programmers need help 

specifying and verifying 
their programs

However, Clojure programmers have their frustrations with Clojure. Of the technical complaints, my take is that Clojure programmers need help specifying and verifying 
their programs. The number 2 complaint was the quality of error messages, with suggestions of creating better language tools perhaps via static typing.



Typed Clojure
Typed Clojure is an optional type system for Clojure

My Research

This leads to my work. I create Typed Clojure, an optional type system for Clojure.



Good Response to Typed Clojure
2012 2013 2014 2015 2016 2017

My Research

There has been a good response to Typed Clojure since I started it in 2012. I have spoken a several major industry conferences, raised money to fund its development, 
and mentored students through GSoC.



How Typed Clojure works
My Research

 Here’s how TC works.



(ann say-hello [Any -> String]) 
(defn say-hello [to] 
  (str “Hello, ” to)) 

(say-hello “world!”) 
;=> “Hello, world!” : String

1. Take an existing  
Clojure program

2. Add type  
annotations

3. Use the type checker 
to verify Clojure 

programs

My Research

How Typed Clojure works

First, you take and existing Clojure program. This particular one creates a Hello World string.



(ann say-hello [Any -> String]) 
(defn say-hello [to] 
  (str “Hello, ” to)) 

(say-hello “world!”) 
;=> “Hello, world!” : String

1. Take an existing  
Clojure program

2. Add type  
annotations

3. Use the type checker 
to verify Clojure 

programs

My Research

How Typed Clojure works

Then you add type annotations to each top-level function.



(ann say-hello [Any -> String]) 
(defn say-hello [to] 
  (str “Hello, ” to)) 

(say-hello “world!”) 
;=> “Hello, world!” : String

1. Take an existing  
Clojure program

2. Add type  
annotations

3. Use the type checker 
to verify Clojure 

programs

My Research

How Typed Clojure works

This says “say-hello” accepts any value and returns a string.



(ann say-hello [Any -> String]) 
(defn say-hello [to] 
  (str “Hello, ” to)) 

(say-hello “world!”) 
;=> “Hello, world!” : String

1. Take an existing  
Clojure program

2. Add type  
annotations

3. Use the type checker 
to verify Clojure 

programs (statically)

My Research

How Typed Clojure works

Finally, you use the provided type checker to verify the Clojure program conforms to the type.



(ann say-hello [Any -> String]) 
(defn say-hello [to] 
  (str “Hello, ” to)) 

(say-hello “world!”) 
;=> “Hello, world!” : String

1. Take an existing  
Clojure program

2. Add type  
annotations

3. Use the type checker 
to verify Clojure 

programs (statically)

My Research

How Typed Clojure works

This happens a compile-time, so this is a static analysis. The return type of String is calculated without running the program.



Symbolic 
ExecutionΩΩ

Extensible 
Typing 
Rules

Typed 
Clojure

Automatic 
Annotations

My Thesis Statement:
Typed Clojure is a  

sound and practical 
optional type system for Clojure

Evaluation

Formalize+Sound

Typed Racket 
(prior work)

Design+ 
Implement

Evaluation
Formalize

Design+Implement
Prototype Prototype

“Annotation 
burden!” - Users

“Incomprehensible 
errors!” - Users

“Check more 
programs!” - Users

I show 
Typed Clojure’s features 

correspond to real 
programs

My starting point for 
Typed Clojure

I created a new  
sound type 

system for Clojure

I created a 
semi-automated 

workflow to port Clojure 
programs

I demonstrate how to 
extend Typed Clojure to 

support custom rules

I show to how to mix 
symbolic execution with type 

checking

Today I am here to present my thesis on TC, summarized by my thesis statement: “TC is a sound and practical optional type system for Clojure”. First, I identified TR as a 
good starting point for a Clojure type system, and repurposed its ideas and implementation. I present the design of TC, formalize its core and prove it sound.

Then I show TC’s features correspond to real-world programs by evaluating over 19k LOC in a production installation of TC.

This evaluation revealed several shortcomings. First, users encountered a high annotation burden, which I created a tool and workflow to help users write annotations. 
Second, type errors in expanded macros were difficult to understand, so I demonstrate how to extend Typed Clojure with custom typing rules for macros. Third, I show 
how to mix symbolic execution with type checking to type check more programs.




Part I 
Design and Evaluation 

of Typed Clojure

The first part of this talk concerns the initial design of Typed Clojure.
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Published: 
“Practical Optional Types for Clojure”, Ambrose Bonnaire-Sergeant, Rowan Davies, Sam 
Tobin-Hochstadt; ESOP 2016

This part was published in ESOP 2016.
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Now, an overview of the design and implementation of Typed Clojure.



Check with Typed Clojure

Let’s go back to these top-rated features of Clojure. I’m going to show you some Clojure programs that exhibit these features, explain how they work, and how to check 
them with TC.



Simple Functions

(defn	point	[x	y]	
		{:x	x,	:y	y})	

(:x	(point	1	2))	
;=>	1	
(:y	(point	1	2))	
;=>	2

(defalias	Point	
		'{:x	Int	:y	Int})

(ann	point	[Int	Int	->	Point])

Scorecard

First, simple functions. Here, a function `point` is defined that takes a pair of coordinates and returns a record with two fields, x and y. On the last two lines, you can see 
how to lookup these fields. In fact, the curly brace syntax introduces a plain map, we are just using it heterogeneously. So to check this in TC, we add a type alias for this 
ad-hoc record, and annotate the function. This demonstrates support for FP and immutable data structures, since maps are immutable in Clojure.



(ann	combine	
		(All	[a]	
				[Point	[Int	Int	->	a]	->	a]))
(defn	combine	[p	f]	
		(f	(:x	p)	(:y	p)))	

(combine	(point	1	2)	+)	
;=>	3	
(combine	(point	1	2)	str)	
;=>	"12"

Higher-order functions
Scorecard

Next, here’s an example of a HOF which combines the coordinates of a point based on a function, first with plus, then with string concatenation. A polymorphic 
annotation is needed, that accepts a point and a 2-argument function. This demonstrates a hallmark of FP that strongly contributes to Clojure’s ease of development.



Type-Based Control flow

(defn	to-int	[m]	
		(if	(string?	m)	
				(Integer/parseInt	m)	
				m))	

(to-int	1)	
;=>	1	
(to-int	"2")	
;=>	2

(ann	to-int		
		[(U	Int	Str)	->	Int])	

Scorecard

Str

Int

Next, an important idiom in Clojure is type-based control flow. Here, we choose branches based on the type of “m”. In the then branch, we use Java interop to convert 
strings to ints. A union type in the annotation is all we need to check this — occurrence typing automatically follows the control flow since local bindings are immutable.



(defmulti	to-int-mm	class)	
(defmethod	to-int-mm	String	[m]	
		(Integer/parseInt	m))	
(defmethod	to-int-mm	Number	[m]	m)	

(to-int-mm	1)			;=>	1	
(to-int-mm	"2")	;=>	2

Multimethods
Scorecard

(ann	to-int-mm	
		[(U	Int	Str)	->	Int])

Str

Int

Here’s the same example, except implemented as an extensible multimethod. By dispatching on the class on an argument using “class” as a first-class function we can 
install methods for each case. The same annotation is enough to type check this multimethod. Again this shows host interop support in TC, but also first-class functions.
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Now, we cover how I formalized and proved Typed Clojure sound.



Formalism

1. Based on Occurrence Typing[1] (big-step semantics) 
2. Add Typed Clojure features: HMaps, Multimethods 
3. Add (some) Java Interop: Classes, Methods, Fields…

[1] ICFP ’10 - Tobin-Hochstadt, Felleisen

The formalism is based on occurrence typing. I added the TC features heterogeneous maps and multimethods, and some Java interoperability.



Type soundness

Well-typed programs  
don’t throw null-pointer exceptions

Well-typed programs don’t “go wrong”Theorem

Corollary

Then I proved type soundness for this fragment of TC, along with the theorem that “well-typed programs don’t go wrong”. Since I encoded NPE’s as “wrong”, we get the 
corollary that TC rules out NPE’s. Null is idiomatic and common in Clojure, so this is an important result that distinguishes TC from other systems like Scala and Java.
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Next, I present my evaluation of the TC’s initial design.



Empirical Evaluation of Typed Clojure 

19k lines of Typed Clojure

I surveyed over 19k LOC in a production installation of TC at CircleCI, where it was used to type check their CI tool.



(let	[f	(fn	[x	:-	Int]	x)]	
		(f	1))

(map	(fn	[p	:-	Point]	
								(+	(:x	p)	
											(:y	p)))	
					[(point	1	2)	(point	3	4)])	

Not Enough FP Support
Required!

Scorecard

Required!

I already showed you the good news of what TC does well. Here’s the bad news. Users were frustrated in the amount of local annotations needed. Every local function 
requires an annotation in practice. This meant the anonymous function sugar was essentially unsupported without an ugly inline annotation. This made Clojure feel less 
flexible and dynamic.



Global Annotation Burden

(ann	combine	
		(All	[a]	
				[Point	[Int	Int	->	a]	->	a]))

(defalias	Point	
		'{:x	Int	:y	Int})

(ann	point	[Int	Int	->	Point])

(ann	extract-int		
		['{:value	(U	Int	Str)}	->	Int])

(ann	extract-int-mm		
		['{:value	(U	Int	Str)}	->	Int])

Burden!

Scorecard

Users felt the annotation burden was too high, since all top-level functions must be annotated. They also needed to reverse engineer libraries they used to derive 
annotations. This was very disruptive.



(inc	nil)

Poor Errors with Macros
;	Expands	to	(Numbers/inc	nil)

Type	Error:	
Static	method	clojure.lang.Numbers/inc	does	not	accept	nil

Who??

(for	[a	[1	2	3]]	
		(inc	a))
Type	Error:	
Static	method	clojure.lang.Numbers/inc	does	not	accept	Any

Huh? But it’s an Int…

(t/for	[a	:-	t/Int,	[1	2	3]]	
		(inc	a))

Scorecard

How was I supposed to know about t/for?

And finally there was a lot of confusion around TC’s approach to checking macro usages. For example, the error message for (inc nil) refers to its inlining. More 
complicated macros like the “for” list-comprehension could not infer good enough types, and users had to use “wrapper macros” (if they knew how, the error didn’t say).



Scorecard: Typed Clojure’s initial design
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So how did TC’s initial design do overall? Well, it’s good a functional programming, immutability, and host interop. But it has some limitations in checking FP idioms like 
requiring too many annotations, and there are various issues that make Clojure development less enjoyable. I address these issues in three parts. First I help users write 
annotations. Second I build a system to extend TC with typing rules. Third, I use symbolic execution to check more programs.



Part II 
Automatic Annotations

Now, we cover automatic annotations for Typed Clojure.
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In submission: 
“Squash the work: A Workflow for Typing Untyped Programs that use Ad-Hoc Data Structures”, 
Ambrose Bonnaire-Sergeant, Sam Tobin-Hochstadt

“Annotation 
burden!”

This work is currently in submission, and is the first response to the evaluation.



Annotation burden

Goal: Automatically generate

(ann	combine	
		(All	[a]	
				[Point	[Int	Int	->	a]	->	a]))

(defalias	Point	
		'{:x	Int	:y	Int})

(ann	point	[Int	Int	->	Point])

(ann	extract-int		
		['{:value	(U	Int	Str)}	->	Int])

(ann	extract-int-mm		
		['{:value	(U	Int	Str)}	->	Int])

So the overall goal of this work is to automatically generate top-level annotations so users don’t have to write them (in full).
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First, we cover the design and implementation of my tool that achieves this.



Γ = {forty-two : Long}
Instrument

Collection Phase

Track

Naive Translation

Collection Phase

Inference Phase

Local “Squashing”
Inference Phase

Global 
“Squashing”

Inference Phase

Γ0

Γ1

Tool design

The tool is based on dynamic analysis, so it observes your running program. It’s split into two phases. First the collection phase collects runtime samples, then the 
inference phase translates samples into an annotation. For example, to annotate this program, it is first instrumented, then tracked, and several passes are used to make 
compact annotations. Local squashing creates recursive types from directly nested types. Global squashing combines types from different functions.



Porting workflow

Auto-generate 
annotations

Type check with 
Typed Clojure

Manually fix 
according to 

error message

…

*

Done

Type error?

*Type checks?

This tool is the first part of a porting workflow. First, you run the tool to generate types. Then you type check the result in TC and keep fixing type errors until it checks. 
The idea is that TC is a sound system so this way you get meaningful specifications in the end.
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Now the formalism for our annotation tool.



“Track and annotate x’s in program e”

The main driver is this “annotate” function that tracks definitions x’s in program e.



Test

Definition

Derived typeTest Track-me

For example, we have a definition “f” and a test. Plugging them into annotate gives the desired type environment.



Intentionally unsound

Aggressively combines 
types to create compact aliases 

and recursive types

Tailored for the workflow

This model is intentionally unsound because it aggressively creates recursive types from unrolled examples. These’s not much to prove about it, so let’s move on…
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… to the evaluation of the porting workflow.



Evaluation
Ported 5 open-source 
programs (~1500 LOC)

Measured the kinds of 
manual changes needed

I ported 5 open source programs from Clojure to TC and measured the kinds of manual changes needed.



(ann	mult	[Int	*	:->	Int])

(ann	mult	[Int	Int	:->	Int])

Auto-generated 
types

Manual 
changes

(ann	initial-perm-numbers	[(Map	Int	Int)	:->	(Coll	Int)])

Auto-generated 
types

(ann	initial-perm-numbers	[(Map	Any	Int)	:->	(Coll	Int)])

Manual 
changes

For example, the annotation for “mult” is actually supposed to accept any number of integers. I had to manually change a type based on a type error (this was because 
mult was only exercised with 2 arguments). Similarly, the next function takes a map of ints to ints, but actually the map may contain any keys. The fix is to manually 
“upcast” the type.



(defalias	E	
		(U	

				'{:E	':app,	:args	(Vec	E),	:fun	E}	
				'{:E	':false}	
				'{:E	':if,	:else	E,	:test	E,	:then	E}	
				'{:E	':lambda,	:arg	Sym,	:arg-type	T,	:body	E}	
				'{:E	':var,	:name	Sym}))

(ann	parse-exp	[Any	:->	E])

				'{:E	':add1}	
				'{:E	':n?}

(defn	parse-exp	[e]	
		(cond	
				(symbol?	e)	{:E	:var,	:name	e}	
				(false?	e)		{:E	:false}	
				(=	'n?	e)			{:E	:n?}	
				...									...		
				...									...))

Has an 
interesting 

type

Auto-generated 
types

Manual 
changes

Our tool can also generate recursive types. Here’s the function we’re generating types for. This function creates an AST from Clojure data, and the automatically 
generated type is recursive and shared amongst several function annotations. However, it’s missing cases due to spotty tests, and I manually had to add some cases (but 
only in one place).



Manual effort

Mostly deleting/upcasting types

Adding missing cases to 
(generated) recursive types

I found most of the effort was deleting or upcasting generated types, and adding missing cases to recursive types.



}

Scorecard

Automatic annotations makes 
porting Clojure programs easier

“Annotation 
burden!”

Based on this experience, this porting workflow makes porting Clojure programs easier, and addresses a key concern in our evaluation of TC.



Part III 
Extensible Typing Rules

Next, we look at how I address poor type error messages due to macroexpansion.
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“Incomprehensible 
errors!”

This is the second response to my evaluation.



Problem

(for	[a	[1	2	3]]	
		(inc	a))
Type	Error:	
Static	method	clojure.lang.Numbers/inc	does	not	accept	Any

How to propagate type information?

Here’s a recap of the problem. If a type error happens in a macro-expansion, it’s difficult for the user to tell why it happened. One way to prevent this is to propagate type 
information so then less type errors happen in the first place.



Idea

(for	[a	[1	2	3]]	
		(inc	a))

Allow the user to define custom 
typing rules for macros

The way to achieve this is to define custom typing rules for macros.



Roadblock: 
Expansion comes before check

Fully expand

Type check

Run

…

Already 
expanded!

However, there’s a problem. Typed Clojure fully expands code before it type checks. If we view expansion and checking as several passes over the same expression, 
then by the time the checker finds the expression, is has already been expanded. This is inherited from Typed Racket’s design.



Solution

Allow Typed Clojure to 
interleave macroexpansion 

and type checking

The way I address this is to allow TC to interleave macroexpansion and type checking.
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Now I present the prototype that demonstrates this idea.



Expand Type 
check

Run

…
*

*

Checker controls expansion

Interleaving macroexpansion and type checking, essentially gives the type checker the control over expansion. Once the checker finds an expression it knows how to 
check, it can fire a rule to check it.



Expand as needed

I wrote a new 
Clojure code analyzer

To achieve this, I wrote a new code analyzer that gives the checker the ability to expand expressions as needed.



This was non-trivial

Must also interleave evaluation

Maintains correct lexical scope

Interacts with Clojure’s type hinting system

This was not easy for many reasons, here are 3. First, Clojure’s evaluation model already interleaves macroexpansion and evaluation, and it was not obvious how to 
integrate TC’s checker into that scheme. Second, it was imperative to maintain correct lexical scope while incrementally expanding code, which does not come for free in 
Clojure. Third, Clojure already has a “type hinting” system that must also be accounted for.



{Custom rules

If partially 
expanded…

Example type checker 
with new analyzer

But, once this analyzer was built, we can build type checkers that interleave expansion and checking. Here’s an example, where the type checker asks if an expression is 
partially expanded and then rules custom rules based on that.



}

Scorecard

Extensible rules Prototype: 
Improve errors, check more programs

“Incomprehensible 
errors!”

This prototype demonstrates how to improve type error messages involving macros, and check more programs, which should improve the experience of TC users.



Part VI 
Symbolic Execution

Now we discuss adding symbolic execution to TC.
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“Check more 
programs!”

This is the final response to the shortcomings identified in my evaluation.



Goal: Reduce local annotations

(map	(fn	[p	:-	Point]	
								(+	(:x	p)	
											(:y	p)))	
					[(point	1	2)	(point	3	4)])	

(let	[f	(fn	[x	:-	Int]	x)]	
		(f	1))

The goal is to reduce local annotations.



Setting: Bidirectional Checking

(map	(fn	[p	:-	?????]	
								(+	(:x	p)	
											(:y	p)))	
					[(point	1	2)	(point	3	4)])	

(let	[f	(fn	[x	:-	???]	x)]	
		(f	1))

Type checking proceeds outside-in

Must have type of x here

Must have type of p here

The reason these annotations are needed is because type checking proceeds outside-in. Types for parameters are needed when a function is discovered by the checker.



Intuition

(let	[f	(fn	[x	:-	???]	x)]	
		(f	1))

(map	(fn	[p	:-	?????]	
								(+	(:x	p)	
											(:y	p)))	
					[(point	1	2)	(point	3	4)])	

The intuition behind my solution is to notice that useful type information is available adjacent to these functions. If only we could delay the checking of these functions 
until those points.



Approach

(let	[f	(fn	[x]	x)]	
		;	f	:				
		(f	1))

New type rule for checking (unannotated) functions:

The type of a function is its code
…and the type environment it was “defined” at

Γ@ (fn	[x]	x)????????

The way this is achieved is by adding a new type rule for checking unannotated functions. The type of these functions is its code, coupled with the type environment it 
was defined with.



Approach

(let	[f	(fn	[x]	x)]	
		;	f	:				
		(f	1))

New type rule for checking (unannotated) functions:

Γ@ (fn	[x]	x)

Resembles runtime closures, except 
executed symbolically

Symbolic Closure Types

This approach resembles runtime closures, except they are executed symbolically, so we call this a symbolic closure type. They are similar to “abstract closures” in 
control flow analysis.



Approach

(let	[f	(fn	[x]	x)]	
		;	f	:				
		(f	1))

Γ@ (fn	[x]	x)

Application rule?

What about an application rule? The idea is that all the information to check a symbolic closure is maintained in the symbolic closure itself, and only the argument type is 
needed. So, we rearrange the various pieces to derive the output type.



Tradeoffs

Undecidable in general

However, many local functions 
are only used once and are non-recursive

Can rely on top-level annotations to drive 
the symbolic execution

There are important tradeoffs involved here. First, symbolic closures are undecidable in general. However, they are viable because many local functions in Clojure are 
small and non-recursive, so they are cheap to symbolically analyze. We can then rely on the (mandatory) top-level annotations to drive the symbolic execution.
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Now we cover my prototype that combines type checking and symbolic closures.



Naive formalism

The typing rules associated with symbolic closures strongly resemble the big-step reduction rules for runtime closures. The introduction rule for symbolic closures just 
packages the code with its definition environment. The application rule unpacks the pieces, extends the parameter to be the derived type, and the body is checked to 
give the type of the entire application.



Prototype Implementation

(tc	?	1)	
=>	Int

(tc	[Int	:->	Int]	(fn	[x]	x))	
=>	[Int	:->	Int]

(tc	?	(fn	[x]	x))	
=>	(Closure	{}	(fn	[x]	x))	

(tc	?	((fn	[x]	x)	1))	
=>	Int

I also provide a prototype implementation for experimentation. The tc operator takes an expected type and an expression, and return the type of the expression. Integers 
can synthesize their type. Providing an expected type to a function triggers the usual bidirectional propagation. Omitting a type gives a symbolic closure. Applying a 
symbolic closure uses symbolic execution to derive the result type.



Prototype Implementation

(tc	?	(map	(comp	(fn	[x]	x)	
																	(fn	[y]	y))	
											[1	2	3]))	

=>	(Seq	Int)

(tc	?	(map	(fn	[x]	x)	[1	2	3]))	
=>	(Seq	Int)

The prototype is also extended to work with polymorphic types. By inspecting the type of “map”, the prototype knows how to feed type information to its function 
arguments. Similarly, this works in the presence of function composition.



Prototype Implementation

is an untypable[1] strongly normalizing term of System F

Evaluating it in plain Clojure, it’s just quirky identity function

(GR	(fn	[_]	(fn	[_]	42)))						;=>	42	
(GR	(fn	[_]	(fn	[_]	“hello”)))	;=>	“hello”

Challenge: Type check this quirky identity function

(ann	id	(All	[a]	[a	->	a]))	
(defn	id	[x]	
		(GR	(fn	[_]	(fn	[_]	x))))

[1] LICS’88, Giannini & Rocca

To test the limits of the prototype, I used this GR term, which is a strongly normalizing term that is untypable in System F (and probably Typed Clojure). This result was 
proven by Giannini and Rocca. However, evaluating it in plain Clojure, it’s clear it’s “morally” well-typed as an identity function. So, can we check this quirky identity 
function?



Prototype Implementation

Symbolic closures let us treat GR as a black box 
until it is executed symbolically

(tc	(All	[a]	[a	->	a])	

				(fn	[x]	
						(GR	(fn	[_]	(fn	[_]	x)))))	

=>	(All	[a]	[a	->	a])

?? ?

Symbolic Closures make the most 
of top-level annotations

Yes, symbolic closures allow us to treat GR as a black box until enough type information is available to symbolically reduce it. First, x is a given type a. Then symbolic 
closures are symbolically executed until x pops out at the correct type. This shows how symbolic closures can check even hopelessly difficult-to-check expressions to 
traditional techniques.



}

Scorecard

Symbolic closure prototype: 
Checks more programs

“Check more 
programs!”

So, based on this experience with symbolic closures, I claim that it is powerful enough to solve many of the type inference problems in TC.



Conclusion
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I present the design of Typed Clojure, 
formalize the core type system, and prove it sound

I present a tool to automatically generate annotations 
and use it to port real-world Clojure programs

I identify and prototype several extensions 
to improve errors and type check more programs

I empirically show Typed Clojure’s features 
correspond to real-world programs

To conclude, my thesis argues that Typed Clojure is a sound and practical optional type system for Clojure. I present the design of TC and prove it sound. I empirically 
show TC’s features correspond to real-world programs. I present a tool to automatically generate annotations and port it to real-world programs. And I show how to 
extend TC with custom typing rules and symbolic execution to address user-experience shortcomings.



Thanks

Thanks for your attention.



Extra slides



Type soundness Proof

1. Extend calculus with Java-style throwable errors 
2. Make explicit assumptions about Java 
3. Add “stuck”, “wrong”, and “error” rules to semantics 
4. Shown: Well-typed programs reduce to correct values or errors 

•  By induction on the reduction derivation, then cases on final red. 
rule and final (non-subsump.) typing rule 

5. Corollary: Well-typed programs don’t “go wrong” 
6. Corollary: Well-typed programs don’t throw null-ptr 

exceptions


