
Typed Clojure
in

Theory and Practice

Ambrose Bonnaire-Sergeant

Hi, my name is Ambrose Bonnaire-Sergeant, and welcome to my talk. Today I will be defending my thesis, which is titled “Typed Clojure in Theory and Practice”

What is Clojure?

3% of JVM users’ primary language is Clojure

- [JVM Ecosystem Report 2018, snyk.io]

A programming language
running on the Java Virtual Machine

1.1% of JVM users have adopted Clojure

- [The State of Java in 2018, baeldung.com]

So, what is Clojure? Clojure is a programming language running on the Java Virtual Machine, so it runs wherever Java does. According to recent JVM surveys, Clojure
has around 3%-1% market share of JVM users, so it’s probably in the top 5 most popular languages on the JVM.

http://snyk.io
http://baeldung.com

General Purpose

[State of Clojure 2019 Survey]

Clojure is designed to be a general purpose programming language, and is used in a wide variety of areas. A survey of around 2500 Clojure programmers earlier this year
showed Clojure is mostly used to build Web applications, open source projects, and provide commercial services.

[State of Clojure 2019 Survey, Weighted average: 0 = Not Important, 1 = Important, 2 = Very Important]

Survey: Why Clojure?

}
}

Values,
First-class functions

Experimentation,
Rapid prototyping

Leverage host

What makes Clojure worth choosing over other languages? The same survey asked this question, and had participants rate their favourite Clojure features from 0 (not
important) to 2 (very important). The top-5 features are in three main groups. First, functional programming and immutability emphasise programming with values and
first-class functions. Second, it is easy to experiment and prototype in Clojure using the REPL and other features. Third, Clojure can leverage all the JVM ecosystem with
host interoperability.

[State of Clojure 2019 Survey]

Frustrations with Clojure

#2

#4

#11

My take
Clojure programmers need help

specifying and verifying
their programs

However, Clojure programmers have their frustrations with Clojure. Of the technical complaints, my take is that Clojure programmers need help specifying and verifying
their programs. The number 2 complaint was the quality of error messages, with suggestions of creating better language tools perhaps via static typing.

Typed Clojure
Typed Clojure is an optional type system for Clojure

My Research

This leads to my work. I create Typed Clojure, an optional type system for Clojure.

Good Response to Typed Clojure
2012 2013 2014 2015 2016 2017

My Research

There has been a good response to Typed Clojure since I started it in 2012. I have spoken a several major industry conferences, raised money to fund its development,
and mentored students through GSoC.

How Typed Clojure works
My Research

 Here’s how TC works.

(ann say-hello [Any -> String])
(defn say-hello [to]
 (str “Hello, ” to))

(say-hello “world!”)
;=> “Hello, world!” : String

1. Take an existing  
Clojure program

2. Add type  
annotations

3. Use the type checker 
to verify Clojure 

programs

My Research

How Typed Clojure works

First, you take and existing Clojure program. This particular one creates a Hello World string.

(ann say-hello [Any -> String])
(defn say-hello [to]
 (str “Hello, ” to))

(say-hello “world!”)
;=> “Hello, world!” : String

1. Take an existing  
Clojure program

2. Add type  
annotations

3. Use the type checker 
to verify Clojure 

programs

My Research

How Typed Clojure works

Then you add type annotations to each top-level function.

(ann say-hello [Any -> String])
(defn say-hello [to]
 (str “Hello, ” to))

(say-hello “world!”)
;=> “Hello, world!” : String

1. Take an existing  
Clojure program

2. Add type  
annotations

3. Use the type checker 
to verify Clojure 

programs

My Research

How Typed Clojure works

This says “say-hello” accepts any value and returns a string.

(ann say-hello [Any -> String])
(defn say-hello [to]
 (str “Hello, ” to))

(say-hello “world!”)
;=> “Hello, world!” : String

1. Take an existing  
Clojure program

2. Add type  
annotations

3. Use the type checker 
to verify Clojure 

programs (statically)

My Research

How Typed Clojure works

Finally, you use the provided type checker to verify the Clojure program conforms to the type.

(ann say-hello [Any -> String])
(defn say-hello [to]
 (str “Hello, ” to))

(say-hello “world!”)
;=> “Hello, world!” : String

1. Take an existing  
Clojure program

2. Add type  
annotations

3. Use the type checker 
to verify Clojure 

programs (statically)

My Research

How Typed Clojure works

This happens a compile-time, so this is a static analysis. The return type of String is calculated without running the program.

Symbolic
ExecutionΩΩ

Extensible
Typing
Rules

Typed
Clojure

Automatic
Annotations

My Thesis Statement:
Typed Clojure is a

sound and practical
optional type system for Clojure

Evaluation

Formalize+Sound

Typed Racket
(prior work)

Design+
Implement

Evaluation
Formalize

Design+Implement
Prototype Prototype

“Annotation
burden!” - Users

“Incomprehensible
errors!” - Users

“Check more
programs!” - Users

I show
Typed Clojure’s features

correspond to real
programs

My starting point for
Typed Clojure

I created a new
sound type

system for Clojure

I created a
semi-automated

workflow to port Clojure
programs

I demonstrate how to
extend Typed Clojure to

support custom rules

I show to how to mix
symbolic execution with type

checking

Today I am here to present my thesis on TC, summarized by my thesis statement: “TC is a sound and practical optional type system for Clojure”. First, I identified TR as a
good starting point for a Clojure type system, and repurposed its ideas and implementation. I present the design of TC, formalize its core and prove it sound.

Then I show TC’s features correspond to real-world programs by evaluating over 19k LOC in a production installation of TC.

This evaluation revealed several shortcomings. First, users encountered a high annotation burden, which I created a tool and workflow to help users write annotations.
Second, type errors in expanded macros were difficult to understand, so I demonstrate how to extend Typed Clojure with custom typing rules for macros. Third, I show
how to mix symbolic execution with type checking to type check more programs.

Part I
Design and Evaluation

of Typed Clojure

The first part of this talk concerns the initial design of Typed Clojure.

Symbolic
Execution

ΩΩ

Extensible
Typing
Rules

Typed
Clojure

Automatic
Annotations

Typed Racket
(prior work)

Evaluation

Formalize+Sound

Design+
Implement

Evaluation
Formalize

Design+Implement
Prototype Prototype

Published:
“Practical Optional Types for Clojure”, Ambrose Bonnaire-Sergeant, Rowan Davies, Sam
Tobin-Hochstadt; ESOP 2016

This part was published in ESOP 2016.

Symbolic
Execution

ΩΩ

Extensible
Typing
Rules

Typed
Clojure

Automatic
Annotations

Typed Racket
(prior work)

Evaluation

Formalize+Sound

Design+
Implement

Evaluation
Formalize

Design+Implement
Prototype Prototype

Now, an overview of the design and implementation of Typed Clojure.

Check with Typed Clojure

Let’s go back to these top-rated features of Clojure. I’m going to show you some Clojure programs that exhibit these features, explain how they work, and how to check
them with TC.

Simple Functions

(defn	point	[x	y]	
		{:x	x,	:y	y})	

(:x	(point	1	2))	
;=>	1	
(:y	(point	1	2))	
;=>	2

(defalias	Point	
		'{:x	Int	:y	Int})

(ann	point	[Int	Int	->	Point])

Scorecard

First, simple functions. Here, a function `point` is defined that takes a pair of coordinates and returns a record with two fields, x and y. On the last two lines, you can see
how to lookup these fields. In fact, the curly brace syntax introduces a plain map, we are just using it heterogeneously. So to check this in TC, we add a type alias for this
ad-hoc record, and annotate the function. This demonstrates support for FP and immutable data structures, since maps are immutable in Clojure.

(ann	combine	
		(All	[a]	
				[Point	[Int	Int	->	a]	->	a]))
(defn	combine	[p	f]	
		(f	(:x	p)	(:y	p)))	

(combine	(point	1	2)	+)	
;=>	3	
(combine	(point	1	2)	str)	
;=>	"12"

Higher-order functions
Scorecard

Next, here’s an example of a HOF which combines the coordinates of a point based on a function, first with plus, then with string concatenation. A polymorphic
annotation is needed, that accepts a point and a 2-argument function. This demonstrates a hallmark of FP that strongly contributes to Clojure’s ease of development.

Type-Based Control flow

(defn	to-int	[m]	
		(if	(string?	m)	
				(Integer/parseInt	m)	
				m))	

(to-int	1)	
;=>	1	
(to-int	"2")	
;=>	2

(ann	to-int		
		[(U	Int	Str)	->	Int])	

Scorecard

Str

Int

Next, an important idiom in Clojure is type-based control flow. Here, we choose branches based on the type of “m”. In the then branch, we use Java interop to convert
strings to ints. A union type in the annotation is all we need to check this — occurrence typing automatically follows the control flow since local bindings are immutable.

(defmulti	to-int-mm	class)	
(defmethod	to-int-mm	String	[m]	
		(Integer/parseInt	m))	
(defmethod	to-int-mm	Number	[m]	m)	

(to-int-mm	1)			;=>	1	
(to-int-mm	"2")	;=>	2

Multimethods
Scorecard

(ann	to-int-mm	
		[(U	Int	Str)	->	Int])

Str

Int

Here’s the same example, except implemented as an extensible multimethod. By dispatching on the class on an argument using “class” as a first-class function we can
install methods for each case. The same annotation is enough to type check this multimethod. Again this shows host interop support in TC, but also first-class functions.

Symbolic
Execution

ΩΩ

Extensible
Typing
Rules

Typed
Clojure

Automatic
Annotations

Typed Racket
(prior work)

Evaluation

Formalize+Sound

Design+
Implement

Evaluation
Formalize

Design+Implement
Prototype Prototype

Now, we cover how I formalized and proved Typed Clojure sound.

Formalism

1. Based on Occurrence Typing[1] (big-step semantics)
2. Add Typed Clojure features: HMaps, Multimethods
3. Add (some) Java Interop: Classes, Methods, Fields…

[1] ICFP ’10 - Tobin-Hochstadt, Felleisen

The formalism is based on occurrence typing. I added the TC features heterogeneous maps and multimethods, and some Java interoperability.

Type soundness

Well-typed programs
don’t throw null-pointer exceptions

Well-typed programs don’t “go wrong”Theorem

Corollary

Then I proved type soundness for this fragment of TC, along with the theorem that “well-typed programs don’t go wrong”. Since I encoded NPE’s as “wrong”, we get the
corollary that TC rules out NPE’s. Null is idiomatic and common in Clojure, so this is an important result that distinguishes TC from other systems like Scala and Java.

Symbolic
Execution

ΩΩ

Extensible
Typing
Rules

Typed
Clojure

Automatic
Annotations

Typed Racket
(prior work)

Evaluation

Formalize+Sound

Design+
Implement

Evaluation
Formalize

Design+Implement
Prototype Prototype

Next, I present my evaluation of the TC’s initial design.

Empirical Evaluation of Typed Clojure

19k lines of Typed Clojure

I surveyed over 19k LOC in a production installation of TC at CircleCI, where it was used to type check their CI tool.

(let	[f	(fn	[x	:-	Int]	x)]	
		(f	1))

(map	(fn	[p	:-	Point]	
								(+	(:x	p)	
											(:y	p)))	
					[(point	1	2)	(point	3	4)])	

Not Enough FP Support
Required!

Scorecard

Required!

I already showed you the good news of what TC does well. Here’s the bad news. Users were frustrated in the amount of local annotations needed. Every local function
requires an annotation in practice. This meant the anonymous function sugar was essentially unsupported without an ugly inline annotation. This made Clojure feel less
flexible and dynamic.

Global Annotation Burden

(ann	combine	
		(All	[a]	
				[Point	[Int	Int	->	a]	->	a]))

(defalias	Point	
		'{:x	Int	:y	Int})

(ann	point	[Int	Int	->	Point])

(ann	extract-int		
		['{:value	(U	Int	Str)}	->	Int])

(ann	extract-int-mm		
		['{:value	(U	Int	Str)}	->	Int])

Burden!

Scorecard

Users felt the annotation burden was too high, since all top-level functions must be annotated. They also needed to reverse engineer libraries they used to derive
annotations. This was very disruptive.

(inc	nil)

Poor Errors with Macros
;	Expands	to	(Numbers/inc	nil)

Type	Error:	
Static	method	clojure.lang.Numbers/inc	does	not	accept	nil

Who??

(for	[a	[1	2	3]]	
		(inc	a))
Type	Error:	
Static	method	clojure.lang.Numbers/inc	does	not	accept	Any

Huh? But it’s an Int…

(t/for	[a	:-	t/Int,	[1	2	3]]	
		(inc	a))

Scorecard

How was I supposed to know about t/for?

And finally there was a lot of confusion around TC’s approach to checking macro usages. For example, the error message for (inc nil) refers to its inlining. More
complicated macros like the “for” list-comprehension could not infer good enough types, and users had to use “wrapper macros” (if they knew how, the error didn’t say).

Scorecard: Typed Clojure’s initial design

}
Symbolic
Execution

ΩΩ

Extensible
Typing
Rules

Typed
Clojure

Automatic
Annotations

Typed
Racket

(prior work)

“Annotation
burden!”

“Incomprehensible
errors!”

“Check more
programs!”

So how did TC’s initial design do overall? Well, it’s good a functional programming, immutability, and host interop. But it has some limitations in checking FP idioms like
requiring too many annotations, and there are various issues that make Clojure development less enjoyable. I address these issues in three parts. First I help users write
annotations. Second I build a system to extend TC with typing rules. Third, I use symbolic execution to check more programs.

Part II
Automatic Annotations

Now, we cover automatic annotations for Typed Clojure.

Symbolic
Execution

ΩΩ

Extensible
Typing
Rules

Typed
Clojure

Automatic
Annotations

Typed Racket
(prior work)

Evaluation

Formalize+Sound

Design+
Implement

Evaluation
Formalize

Design+Implement
Prototype Prototype

In submission:
“Squash the work: A Workflow for Typing Untyped Programs that use Ad-Hoc Data Structures”,
Ambrose Bonnaire-Sergeant, Sam Tobin-Hochstadt

“Annotation
burden!”

This work is currently in submission, and is the first response to the evaluation.

Annotation burden

Goal: Automatically generate

(ann	combine	
		(All	[a]	
				[Point	[Int	Int	->	a]	->	a]))

(defalias	Point	
		'{:x	Int	:y	Int})

(ann	point	[Int	Int	->	Point])

(ann	extract-int		
		['{:value	(U	Int	Str)}	->	Int])

(ann	extract-int-mm		
		['{:value	(U	Int	Str)}	->	Int])

So the overall goal of this work is to automatically generate top-level annotations so users don’t have to write them (in full).

Symbolic
Execution

ΩΩ

Extensible
Typing
Rules

Typed
Clojure

Automatic
Annotations

Typed Racket
(prior work)

Evaluation

Formalize+Sound

Design+
Implement

Evaluation
Formalize

Design+Implement
Prototype Prototype

First, we cover the design and implementation of my tool that achieves this.

Γ = {forty-two : Long}
Instrument

Collection Phase

Track

Naive Translation

Collection Phase

Inference Phase

Local “Squashing”
Inference Phase

Global
“Squashing”

Inference Phase

Γ0

Γ1

Tool design

The tool is based on dynamic analysis, so it observes your running program. It’s split into two phases. First the collection phase collects runtime samples, then the
inference phase translates samples into an annotation. For example, to annotate this program, it is first instrumented, then tracked, and several passes are used to make
compact annotations. Local squashing creates recursive types from directly nested types. Global squashing combines types from different functions.

Porting workflow

Auto-generate
annotations

Type check with
Typed Clojure

Manually fix
according to

error message

…

*

Done

Type error?

*Type checks?

This tool is the first part of a porting workflow. First, you run the tool to generate types. Then you type check the result in TC and keep fixing type errors until it checks.
The idea is that TC is a sound system so this way you get meaningful specifications in the end.

Symbolic
Execution

ΩΩ

Extensible
Typing
Rules

Typed
Clojure

Automatic
Annotations

Typed Racket
(prior work)

Evaluation

Formalize+Sound

Design+
Implement

Evaluation
Formalize

Design+Implement
Prototype Prototype

Now the formalism for our annotation tool.

“Track and annotate x’s in program e”

The main driver is this “annotate” function that tracks definitions x’s in program e.

Test

Definition

Derived typeTest Track-me

For example, we have a definition “f” and a test. Plugging them into annotate gives the desired type environment.

Intentionally unsound

Aggressively combines
types to create compact aliases

and recursive types

Tailored for the workflow

This model is intentionally unsound because it aggressively creates recursive types from unrolled examples. These’s not much to prove about it, so let’s move on…

Symbolic
Execution

ΩΩ

Extensible
Typing
Rules

Typed
Clojure

Automatic
Annotations

Typed Racket
(prior work)

Evaluation

Formalize+Sound

Design+
Implement

Evaluation
Formalize

Design+Implement
Prototype Prototype

… to the evaluation of the porting workflow.

Evaluation
Ported 5 open-source
programs (~1500 LOC)

Measured the kinds of
manual changes needed

I ported 5 open source programs from Clojure to TC and measured the kinds of manual changes needed.

(ann	mult	[Int	*	:->	Int])

(ann	mult	[Int	Int	:->	Int])

Auto-generated
types

Manual
changes

(ann	initial-perm-numbers	[(Map	Int	Int)	:->	(Coll	Int)])

Auto-generated
types

(ann	initial-perm-numbers	[(Map	Any	Int)	:->	(Coll	Int)])

Manual
changes

For example, the annotation for “mult” is actually supposed to accept any number of integers. I had to manually change a type based on a type error (this was because
mult was only exercised with 2 arguments). Similarly, the next function takes a map of ints to ints, but actually the map may contain any keys. The fix is to manually
“upcast” the type.

(defalias	E	
		(U	

				'{:E	':app,	:args	(Vec	E),	:fun	E}	
				'{:E	':false}	
				'{:E	':if,	:else	E,	:test	E,	:then	E}	
				'{:E	':lambda,	:arg	Sym,	:arg-type	T,	:body	E}	
				'{:E	':var,	:name	Sym}))

(ann	parse-exp	[Any	:->	E])

				'{:E	':add1}	
				'{:E	':n?}

(defn	parse-exp	[e]	
		(cond	
				(symbol?	e)	{:E	:var,	:name	e}	
				(false?	e)		{:E	:false}	
				(=	'n?	e)			{:E	:n?}	
					
			))

Has an
interesting

type

Auto-generated
types

Manual
changes

Our tool can also generate recursive types. Here’s the function we’re generating types for. This function creates an AST from Clojure data, and the automatically
generated type is recursive and shared amongst several function annotations. However, it’s missing cases due to spotty tests, and I manually had to add some cases (but
only in one place).

Manual effort

Mostly deleting/upcasting types

Adding missing cases to
(generated) recursive types

I found most of the effort was deleting or upcasting generated types, and adding missing cases to recursive types.

}

Scorecard

Automatic annotations makes
porting Clojure programs easier

“Annotation
burden!”

Based on this experience, this porting workflow makes porting Clojure programs easier, and addresses a key concern in our evaluation of TC.

Part III
Extensible Typing Rules

Next, we look at how I address poor type error messages due to macroexpansion.

Symbolic
Execution

ΩΩ
Typed

Clojure
Automatic

Annotations
Typed Racket

(prior work)

Evaluation

Formalize+Sound

Design+
Implement

Evaluation
Formalize

Design+Implement
Prototype Prototype

Extensible
Typing
Rules

“Incomprehensible
errors!”

This is the second response to my evaluation.

Problem

(for	[a	[1	2	3]]	
		(inc	a))
Type	Error:	
Static	method	clojure.lang.Numbers/inc	does	not	accept	Any

How to propagate type information?

Here’s a recap of the problem. If a type error happens in a macro-expansion, it’s difficult for the user to tell why it happened. One way to prevent this is to propagate type
information so then less type errors happen in the first place.

Idea

(for	[a	[1	2	3]]	
		(inc	a))

Allow the user to define custom
typing rules for macros

The way to achieve this is to define custom typing rules for macros.

Roadblock:
Expansion comes before check

Fully expand

Type check

Run

…

Already
expanded!

However, there’s a problem. Typed Clojure fully expands code before it type checks. If we view expansion and checking as several passes over the same expression,
then by the time the checker finds the expression, is has already been expanded. This is inherited from Typed Racket’s design.

Solution

Allow Typed Clojure to
interleave macroexpansion

and type checking

The way I address this is to allow TC to interleave macroexpansion and type checking.

Symbolic
Execution

ΩΩ
Typed

Clojure
Automatic

Annotations
Typed Racket

(prior work)

Evaluation

Formalize+Sound

Design+
Implement

Evaluation
Formalize

Design+Implement
Prototype Prototype

Extensible
Typing
Rules

Now I present the prototype that demonstrates this idea.

Expand Type
check

Run

…
*

*

Checker controls expansion

Interleaving macroexpansion and type checking, essentially gives the type checker the control over expansion. Once the checker finds an expression it knows how to
check, it can fire a rule to check it.

Expand as needed

I wrote a new
Clojure code analyzer

To achieve this, I wrote a new code analyzer that gives the checker the ability to expand expressions as needed.

This was non-trivial

Must also interleave evaluation

Maintains correct lexical scope

Interacts with Clojure’s type hinting system

This was not easy for many reasons, here are 3. First, Clojure’s evaluation model already interleaves macroexpansion and evaluation, and it was not obvious how to
integrate TC’s checker into that scheme. Second, it was imperative to maintain correct lexical scope while incrementally expanding code, which does not come for free in
Clojure. Third, Clojure already has a “type hinting” system that must also be accounted for.

{Custom rules

If partially
expanded…

Example type checker
with new analyzer

But, once this analyzer was built, we can build type checkers that interleave expansion and checking. Here’s an example, where the type checker asks if an expression is
partially expanded and then rules custom rules based on that.

}

Scorecard

Extensible rules Prototype:
Improve errors, check more programs

“Incomprehensible
errors!”

This prototype demonstrates how to improve type error messages involving macros, and check more programs, which should improve the experience of TC users.

Part VI
Symbolic Execution

Now we discuss adding symbolic execution to TC.

Symbolic
Execution

ΩΩ
Typed

Clojure
Automatic

Annotations
Typed Racket

(prior work)

Evaluation

Formalize+Sound

Design+
Implement

Evaluation
Formalize

Design+Implement
Prototype Prototype

Extensible
Typing
Rules

“Check more
programs!”

This is the final response to the shortcomings identified in my evaluation.

Goal: Reduce local annotations

(map	(fn	[p	:-	Point]	
								(+	(:x	p)	
											(:y	p)))	
					[(point	1	2)	(point	3	4)])	

(let	[f	(fn	[x	:-	Int]	x)]	
		(f	1))

The goal is to reduce local annotations.

Setting: Bidirectional Checking

(map	(fn	[p	:-	?????]	
								(+	(:x	p)	
											(:y	p)))	
					[(point	1	2)	(point	3	4)])	

(let	[f	(fn	[x	:-	???]	x)]	
		(f	1))

Type checking proceeds outside-in

Must have type of x here

Must have type of p here

The reason these annotations are needed is because type checking proceeds outside-in. Types for parameters are needed when a function is discovered by the checker.

Intuition

(let	[f	(fn	[x	:-	???]	x)]	
		(f	1))

(map	(fn	[p	:-	?????]	
								(+	(:x	p)	
											(:y	p)))	
					[(point	1	2)	(point	3	4)])	

The intuition behind my solution is to notice that useful type information is available adjacent to these functions. If only we could delay the checking of these functions
until those points.

Approach

(let	[f	(fn	[x]	x)]	
		;	f	:				
		(f	1))

New type rule for checking (unannotated) functions:

The type of a function is its code
…and the type environment it was “defined” at

Γ@ (fn	[x]	x)????????

The way this is achieved is by adding a new type rule for checking unannotated functions. The type of these functions is its code, coupled with the type environment it
was defined with.

Approach

(let	[f	(fn	[x]	x)]	
		;	f	:				
		(f	1))

New type rule for checking (unannotated) functions:

Γ@ (fn	[x]	x)

Resembles runtime closures, except
executed symbolically

Symbolic Closure Types

This approach resembles runtime closures, except they are executed symbolically, so we call this a symbolic closure type. They are similar to “abstract closures” in
control flow analysis.

Approach

(let	[f	(fn	[x]	x)]	
		;	f	:				
		(f	1))

Γ@ (fn	[x]	x)

Application rule?

What about an application rule? The idea is that all the information to check a symbolic closure is maintained in the symbolic closure itself, and only the argument type is
needed. So, we rearrange the various pieces to derive the output type.

Tradeoffs

Undecidable in general

However, many local functions
are only used once and are non-recursive

Can rely on top-level annotations to drive
the symbolic execution

There are important tradeoffs involved here. First, symbolic closures are undecidable in general. However, they are viable because many local functions in Clojure are
small and non-recursive, so they are cheap to symbolically analyze. We can then rely on the (mandatory) top-level annotations to drive the symbolic execution.

Symbolic
Execution

ΩΩ
Typed

Clojure
Automatic

Annotations
Typed Racket

(prior work)

Evaluation

Formalize+Sound

Design+
Implement

Evaluation
Formalize

Design+Implement
Prototype Prototype

Extensible
Typing
Rules

Now we cover my prototype that combines type checking and symbolic closures.

Naive formalism

The typing rules associated with symbolic closures strongly resemble the big-step reduction rules for runtime closures. The introduction rule for symbolic closures just
packages the code with its definition environment. The application rule unpacks the pieces, extends the parameter to be the derived type, and the body is checked to
give the type of the entire application.

Prototype Implementation

(tc	?	1)	
=>	Int

(tc	[Int	:->	Int]	(fn	[x]	x))	
=>	[Int	:->	Int]

(tc	?	(fn	[x]	x))	
=>	(Closure	{}	(fn	[x]	x))	

(tc	?	((fn	[x]	x)	1))	
=>	Int

I also provide a prototype implementation for experimentation. The tc operator takes an expected type and an expression, and return the type of the expression. Integers
can synthesize their type. Providing an expected type to a function triggers the usual bidirectional propagation. Omitting a type gives a symbolic closure. Applying a
symbolic closure uses symbolic execution to derive the result type.

Prototype Implementation

(tc	?	(map	(comp	(fn	[x]	x)	
																	(fn	[y]	y))	
											[1	2	3]))	

=>	(Seq	Int)

(tc	?	(map	(fn	[x]	x)	[1	2	3]))	
=>	(Seq	Int)

The prototype is also extended to work with polymorphic types. By inspecting the type of “map”, the prototype knows how to feed type information to its function
arguments. Similarly, this works in the presence of function composition.

Prototype Implementation

is an untypable[1] strongly normalizing term of System F

Evaluating it in plain Clojure, it’s just quirky identity function

(GR	(fn	[_]	(fn	[_]	42)))						;=>	42	
(GR	(fn	[_]	(fn	[_]	“hello”)))	;=>	“hello”

Challenge: Type check this quirky identity function

(ann	id	(All	[a]	[a	->	a]))	
(defn	id	[x]	
		(GR	(fn	[_]	(fn	[_]	x))))

[1] LICS’88, Giannini & Rocca

To test the limits of the prototype, I used this GR term, which is a strongly normalizing term that is untypable in System F (and probably Typed Clojure). This result was
proven by Giannini and Rocca. However, evaluating it in plain Clojure, it’s clear it’s “morally” well-typed as an identity function. So, can we check this quirky identity
function?

Prototype Implementation

Symbolic closures let us treat GR as a black box
until it is executed symbolically

(tc	(All	[a]	[a	->	a])	

				(fn	[x]	
						(GR	(fn	[_]	(fn	[_]	x)))))	

=>	(All	[a]	[a	->	a])

?? ?

Symbolic Closures make the most
of top-level annotations

Yes, symbolic closures allow us to treat GR as a black box until enough type information is available to symbolically reduce it. First, x is a given type a. Then symbolic
closures are symbolically executed until x pops out at the correct type. This shows how symbolic closures can check even hopelessly difficult-to-check expressions to
traditional techniques.

}

Scorecard

Symbolic closure prototype:
Checks more programs

“Check more
programs!”

So, based on this experience with symbolic closures, I claim that it is powerful enough to solve many of the type inference problems in TC.

Conclusion

Symbolic
ExecutionΩΩ

Extensible
Typing
Rules

Typed
Clojure

Automatic
Annotations

Typed Clojure is a
sound and practical

optional type system for Clojure

Evaluation

Formalize+Sound

Typed Racket
(prior work)

Design+
Implement

Evaluation
Formalize

Design+Implement
Prototype Prototype

I present the design of Typed Clojure,
formalize the core type system, and prove it sound

I present a tool to automatically generate annotations
and use it to port real-world Clojure programs

I identify and prototype several extensions
to improve errors and type check more programs

I empirically show Typed Clojure’s features
correspond to real-world programs

To conclude, my thesis argues that Typed Clojure is a sound and practical optional type system for Clojure. I present the design of TC and prove it sound. I empirically
show TC’s features correspond to real-world programs. I present a tool to automatically generate annotations and port it to real-world programs. And I show how to
extend TC with custom typing rules and symbolic execution to address user-experience shortcomings.

Thanks

Thanks for your attention.

Extra slides

Type soundness Proof

1. Extend calculus with Java-style throwable errors
2. Make explicit assumptions about Java
3. Add “stuck”, “wrong”, and “error” rules to semantics
4. Shown: Well-typed programs reduce to correct values or errors

• By induction on the reduction derivation, then cases on final red.
rule and final (non-subsump.) typing rule

5. Corollary: Well-typed programs don’t “go wrong”
6. Corollary: Well-typed programs don’t throw null-ptr

exceptions

